State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics

Sergio Manzetti , Francesco Enrichi

Advances in Manufacturing ›› 2017, Vol. 5 ›› Issue (2) : 105 -119.

PDF
Advances in Manufacturing ›› 2017, Vol. 5 ›› Issue (2) : 105 -119. DOI: 10.1007/s40436-017-0172-y
Article

State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics

Author information +
History +
PDF

Abstract

Nanomaterials composed of metals and metal alloys are the most valuable components in emerging micro- and nano-electronic devices and innovations to date. The composition of these nanomaterials, their quantum chemical and physical properties, and their production methods are in critical need of summarization, so that a complete state of the art of the present and future of nanotechnologies can be presented. In this review, we report on the most recent activities and results in the fields of spintronics, nanophotonics, and nanomagnetics, with particular emphasis on metallic nanoparticles in alloys and pure metals, as well as in organic combinations and in relation to carbon-based nanostructures. This review shows that the combinatory synthesis of alloys with rare metals, such as scandium, yttrium, and rare earths imparts valuable qualities to high-magnetic-field compounds, and provides unique properties with emphasis on nanoelectronic and computational components. In this review, we also shed light on the methods of synthesis and the background of spintronic, nanomagnetic, and nanophotonic materials, with applications in optics, diagnostics, nanoelectronics, and computational nanotechnology. The review is important for the industrial development of novel materials, and for summarizing both fabrication and manufacturing methods, as well as principles and functions of metallic nanoparticles.

Keywords

Metal / Alloy / Nanoparticle / Spintronics / Nanophotonics / Nanomagnetics / Method / Synthesis

Cite this article

Download citation ▾
Sergio Manzetti, Francesco Enrichi. State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics. Advances in Manufacturing, 2017, 5(2): 105-119 DOI:10.1007/s40436-017-0172-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Trauzettel B, Bulaev DV, Loss D, et al. Spin qubits in graphene quantum dots. Nat Phys, 2007, 3: 192-196.

[2]

Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun, 2011, 47: 6858-6860.

[3]

Pradhan A, Holloway T, Mundle R, et al. Energy harvesting in semiconductor-insulator-semiconductor junctions through excitation of surface plasmon polaritons. Appl Phys Lett, 2012, 100: 061127.

[4]

Park K, Lee M, Liu Y, et al. Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater, 2012, 24: 2999-3004.

[5]

Gittins DI, Bethell D, Schiffrin DJ, et al. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature, 2000, 408: 67-69.

[6]

Huang Y, Duan X, Lieber CM. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1: 142-147.

[7]

Brongersma ML, Kik PG. Surface plasmon nanophotonics, 2007, Netherlands: Springer.

[8]

Wolf SA, Lu J, Stan MR, et al. The promise of nanomagnetics and spintronics for future logic and universal memory. Proc IEEE, 2010, 98: 2155-2168.

[9]

Awschalom DD, Flatté ME. Challenges for semiconductor spintronics. Nat Phys, 2007, 3: 153-159.

[10]

Wolf S, Awschalom D, Buhrman R, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294: 1488-1495.

[11]

Mourachkine A, Yazyev O, Ducati C, et al. Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field. Nano Lett, 2008, 8: 3683-3687.

[12]

Ohtsu M, Kobayashi K, Kawazoe T, et al. Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields. IEEE J Sel Top Quantum Electron, 2002, 8: 839-862.

[13]

Qian F, Li Y, Gradecak S, et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett, 2004, 4(10): 1975-1979.

[14]

Žutić I, Fabian J, Sarma SD. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76: 323.

[15]

Ling X, Zhou X, Shu W, et al. Realization of tunable photonic spin hall effect by tailoring the Pancharatnam-Berry phase. Sci Rep, 2013, 5: 5557

[16]

Thibeault SA, Kang JH, Sauti G, et al. Nanomaterials for radiation shielding. MRS Bull, 2015, 40: 836-841.

[17]

Xu X, Yao W, Xiao D, et al. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys, 2014, 10: 343-350.

[18]

McAlister S. The hall effect in spin glasses. J Appl Phys, 1978, 49: 1616-1621.

[19]

Senthil T, Marston J, Fisher MP. Spin quantum hall effect in unconventional superconductors. Phys Rev B, 1999, 60(6): 4245-4254.

[20]

Hirsch JE. Spin hall effect. Phys Rev Lett, 1999, 83(9): 1834-1837.

[21]

Dyakonov M, Perel V. Possibility of orienting electron spins with current. Sov J Exp Theor Phys Lett, 1971, 13: 467-469.

[22]

Girvin SM, et al. Comtet A, Jolicoeur T, Ouvry S, et al. The quantum hall effect: novel excitations and broken symmetries. Topological aspects of low dimensional systems, 1999, Berlin: Springer 53-175.

[23]

Laughlin RB. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys Rev Lett, 1983, 50: 1395-1398.

[24]

Burr GW, Kurdi BN, Scott JC, et al. Overview of candidate device technologies for storage-class memory. IBM J Res Dev, 2008, 52: 449-464.

[25]

Wang KL, Alzate JG, Amiri PK. Low-power non-volatile spintronic memory: STT-RAM and beyond. J Phys Appl Phys, 2013, 46(7): 074003.

[26]

Wang X, Keshtbod P, Wang Z, et al. Spin-orbitronics memory device with matching and self-reference functionality. IEEE Trans Magn, 2015, 51: 1-4.

[27]

Jiang Z, Zhang Y, Tan YW, et al. Quantum hall effect in graphene. Solid State Commun, 2007, 143(1–2): 14-19.

[28]

Zibouche N, Philipsen P, Kuc A, et al. Transition-metal dichalcogenide bilayers: switching materials for spintronic and valleytronic applications. Phys Rev B, 2014, 90: 125440.

[29]

Chua C, Connolly M, Lartsev A, et al. Quantum hall effect and quantum point contact in bilayer-patched epitaxial graphene. Nano Lett, 2014, 14: 3369-3373.

[30]

Klitzing KV. Physics and application of the quantum hall effect. Phys B Condens Matter, 1995, 204(1–4): 111-116.

[31]

Kirchain R, Kimerling L. A roadmap for nanophotonics. Nat Photonics, 2007, 1: 303-305.

[32]

Cortes C, Newman W, Molesky S, et al. Quantum nanophotonics using hyperbolic metamaterials. J Opt, 2012, 14(6): 063001.

[33]

Shen Y, Friend CS, Jiang Y, et al. Nanophotonics: interactions, materials, and applications. J Phys Chem B, 2000, 104: 7577-7587.

[34]

Callahan DM, Munday JN, Atwater HA. Solar cell light trapping beyond the ray optic limit. Nano Lett, 2012, 12: 214-218.

[35]

Yu Z, Raman A, Fan S. Fundamental limit of nanophotonic light trapping in solar cells. Proc Natl Acad Sci, 2010, 107: 17491-17496.

[36]

Mokkapati S, Catchpole K. Nanophotonic light trapping in solar cells. J Appl Phys, 2012, 112: 101101.

[37]

Teperik TV, De Abajo FG, Borisov A, et al. Omnidirectional absorption in nanostructured metal surfaces. Nat Photonics, 2008, 2: 299-301.

[38]

Podolskiy VA, Sarychev AK, Shalaev VM. Plasmon modes in metal nanowires and left-handed materials. J Nonlinear Opt Phys Mater, 2002, 11: 65-74.

[39]

Polman A. Plasmonics applied. Science, 2008, 322: 868-869.

[40]

Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9: 205-213.

[41]

Green MA, Pillai S. Harnessing plasmonics for solar cells. Nat Photonics, 2012, 6: 130-132.

[42]

Delacour C, Blaize S, Grosse P, et al. Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics. Nano Lett, 2010, 10: 2922-2926.

[43]

Tsakalakos L, Balch J, Fronheiser J, et al. Silicon nanowire solar cells. Appl Phys Lett, 2007, 91: 233117.

[44]

Kim HS, Lee CR, Im JH, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2(8): 591

[45]

Ferrell T, Sharp S, Warmack R. Progress in photon scanning tunneling microscopy (PSTM). Ultramicroscopy, 1992, 42: 408-415.

[46]

Paesler M, Moyer P, Jahncke C, et al. Analytical photon scanning tunneling microscopy. Phys Rev B, 1990, 42: 6750.

[47]

Bourillot E, Fornel FD, Goudonnet JP, et al. Imaging of test quartz gratings with a photon scanning tunneling microscope: experiment and theory. J Opt Soc Am A, 1995, 12(8): 1749-1764.

[48]

Carminati R, Greffet JJ. Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function. Opt Commun, 1995, 116: 316-321.

[49]

Skomski R. Nanomagnetics. J Phys Condens Matter, 2003, 15: R841.

[50]

Saywell A, Magnano G, Satterley CJ, et al. Self-assembled aggregates formed by single-molecule magnets on a gold surface. Nat Commun, 2010, 1: 75.

[51]

del Carmen Giménez-López M, Moro F, La Torre A, et al. Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun, 2011, 2: 407.

[52]

Manzetti S. Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv Manuf, 2013, 1(3): 198-210.

[53]

Leuenberger MN, Loss D. Quantum computing in molecular magnets. Nature, 2001, 410: 789-793.

[54]

Haynes CL, Van Duyne RP. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B, 2001, 105: 5599-5611.

[55]

Rokhvarger AE, Chigirinsky LA. Design and nanofabrication of superconductor ceramic strands and customized leads. Int J Appl Ceram Technol, 2004, 1: 129-139.

[56]

Krishnan KM. Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn, 2010, 46: 2523-2558.

[57]

Welser J, Wolf SA, Avouris P et al (2011) Applications: nanoelectronics and nanomagnetics. In: Nanotechnol. Res. Dir. Soc. Needs 2020. Springer, Berlin, pp 375–415

[58]

Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nat Mater, 2008, 7: 179-186.

[59]

Manzetti S, Lu T. Alternant conjugated oligomers with tunable and narrow HOMO-LUMO gaps as sustainable nanowires. RSC Adv, 2013, 3: 25881-25890.

[60]

Li C, Lin J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem, 2010, 20: 6831-6847.

[61]

Vetrone F, Naccache R, Zamarron A, et al. Temperature sensing using fluorescent nanothermometers. ACS Nano, 2010, 4: 3254-3258.

[62]

Bünzli JCG, Comby S, Chauvin AS, et al. New opportunities for lanthanide luminescence. J Rare Earths, 2007, 25: 257-274.

[63]

Bloss W, Sham L, Vinter V. Interaction-induced transition at low densities in silicon inversion layer. Phys Rev Lett, 1979, 43: 1529.

[64]

Cserti J, Dávid G. Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys Rev B, 2006, 74: 172305.

[65]

Manzetti S, Patek M. The accurate wavefunction of the active space of the rhenium dimer resolved using the ab initio Brueckner coupled-cluster method. Struct Chem, 2016, 27(4): 1071-1080.

[66]

Tulapurkar A, Suzuki Y, Fukushima A, et al. Spin-torque diode effect in magnetic tunnel junctions. Nature, 2005, 438: 339-342.

[67]

Ohno H. A window on the future of spintronics. Nat Mater, 2010, 9: 952-954.

[68]

Locatelli N, Cros V, Grollier J. Spin-torque building blocks. Nat Mater, 2014, 13: 11-20.

[69]

Mai C, Barrette A, Yu Y, et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett, 2013, 14: 202-206.

[70]

Zeng M, Feng Y, Liang G. Graphene-based spin caloritronics. Nano Lett, 2011, 11: 1369-1373.

[71]

Myoung N, Seo K, Lee SJ, et al. Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. ACS Nano, 2013, 7: 7021-7027.

[72]

Cheng Y, Zhu Z, Tahir M, et al. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. EPL Europhys Lett, 2013, 102: 57001.

[73]

Ohkawa FJ, Uemura Y. Theory of valley splitting in an N-channel (100) inversion layer of Si I: formulation by extended zone effective mass theory. J Phys Soc Jpn, 1977, 43: 907-916.

[74]

Ohkawa FJ, Uemura Y. Theory of valley splitting in an N-channel (100) inversion layer of Si II: electric break through. J Phys Soc Jpn, 1977, 43: 917-924.

[75]

Ohkawa FJ, Uemura Y. Theory of valley splitting in an N-channel (100) inversion layer of Si III: enhancement of splittings by many-body effects. J Phys Soc Jpn, 1977, 43: 925-932.

[76]

Behnia K. Condensed-matter physics: polarized light boosts valleytronics. Nat Nanotechnol, 2012, 7: 488-489.

[77]

Ezawa M. Spin valleytronics in silicene: quantum spin hall-quantum anomalous hall insulators and single-valley semimetals. Phys Rev B, 2013, 87: 155415.

[78]

Ezawa M. Valleytronics on the surface of a topological crystalline insulator: elliptic dichroism and valley-selective optical pumping. Phys Rev B, 2014, 89: 195413.

[79]

Nebel CE. Valleytronics: electrons dance in diamond. Nat Mater, 2013, 12: 690-691.

[80]

Maassen J, Ji W, Guo H. Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett, 2010, 11: 151-155.

[81]

Novoselov K, Blake P, Katsnelson M (2001) Graphene: electronic properties. Encycl Mater Sci Technol 244:1–6

[82]

Pronschinske A, Pedevilla P, Murphy CJ, et al. Enhancement of low-energy electron emission in 2D radioactive films. Nat Mater, 2015, 14: 904-907.

[83]

Sundaram SK, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater, 2002, 1: 217-224.

[84]

Sanche L. Cancer treatment: low-energy electron therapy. Nat Mater, 2015, 14: 861-863.

[85]

Mattheiss LF. Energy bands for 2H–Nb Se2 and 2H–Mo S2. Phys Rev Lett, 1973, 30: 784-787.

[86]

Mattheiss LF. Band structure and Fermi surface for rhenium. Phys Rev, 1966, 151: 450-464.

[87]

Mattheiss LF. Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B, 1973, 8: 3719-3740.

[88]

Te Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem, 2001, 22: 931-967.

[89]

Schrödinger E. An undulatory theory of the mechanics of atoms and molecules. Phys Rev, 1926, 28: 1049-1070.

[90]

Schrödinger E (1940) A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proceedings of the Royal Irish Academy, pp 9–16

[91]

Tahir M, Schwingenschlögl U. Valley polarized quantum hall effect and topological insulator phase transitions in silicene. Sci Rep, 2013, 3: 1075.

[92]

Kaloni TP, Singh N, Schwingenschlögl U. Prediction of a quantum anomalous hall state in Co-decorated silicene. Phys Rev B, 2014, 89: 208-220.

[93]

Liu CC, Feng W, Yao Y. Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107(7): 2989-2996.

[94]

Zhang XL, Liu LF, Liu WM (2013) Quantum anomalous hall effect and tunable topological states in 3D transition metals doped silicene. Sci Rep 3:2908

[95]

Wu G, Lue NY, Chang L. Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B, 2011, 84: 195463.

[96]

Lee MK, Lue NY, Wen CK, et al. Valley-based field-effect transistors in graphene. Phys Rev B, 2012, 86: 165411.

[97]

Macià F, Kent AD, Hoppensteadt FC. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology, 2011, 22: 95301.

[98]

Wang X, Chen Y, Xi H, et al. Spintronic memristor through spin-torque-induced magnetization motion. Electron Device Lett IEEE, 2009, 30: 294-297.

[99]

Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006, 439: 957-960.

[100]

Mañosa L, González-Alonso D, Planes A, et al. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nat Mater, 2010, 9: 478-481.

[101]

Krenke T, Duman E, Acet M, et al. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater, 2005, 4: 450-454.

[102]

Khalsa G, Stiles MD, Grollier J (2015) Critical current and linewidth reduction in spin-torque nano-oscillators by delayed self-injection. Appl Phys Lett 106:242402

[103]

Locatelli N, Mizrahi A, Accioly A, et al. Noise-enhanced synchronization of stochastic magnetic oscillators. Phys Rev Appl, 2014, 2: 034009.

[104]

Keatley P, Gangmei P, Dvornik M, et al. Isolating the dynamic dipolar interaction between a pair of nanoscale ferromagnetic disks. Phys Rev Lett, 2013, 110: 187202.

[105]

Barber D, Freestone I. An investigation of the origin of the colour of the Lycurgus cup by analytical transmission electron microscopy. Archaeometry, 1990, 32: 33-45.

[106]

Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale, 2014, 6: 2502-2530.

[107]

Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater, 2008, 7: 442-453.

[108]

Hellebust A, Richards-Kortum R. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomed, 2012, 7: 429-445.

[109]

Sanders M, Lin Y, Wei J, et al. An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron, 2014, 61: 95-101.

[110]

Xu LJ, Zong C, Zheng XS, et al. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal Chem, 2014, 86: 2238-2245.

[111]

Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2: 3.

[112]

Huang X, El-Sayed MA. Plasmonic photo-thermal therapy (PPTT). Alex J Med, 2011, 47: 1-9.

[113]

Carregal-Romero S, Ochs M, Rivera-Gil P, et al. NIR-light triggered delivery of macromolecules into the cytosol. J Controll Release, 2012, 159: 120-127.

[114]

Catchpole KR, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93: 191113.

[115]

Lim S, Mar W, Matheu P, et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys, 2007, 101: 104309.

[116]

Zhang D, Yang X, Hong X, et al. Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Opt Quantum Electron, 2015, 47: 1421-1427.

[117]

Martín-Rodríguez R, Geitenbeek R, Meijerink A. Incorporation and luminescence of Yb3+ in CdSe nanocrystals. J Am Chem Soc, 2013, 135: 13668-13671.

[118]

Mukherjee P, Sloan RF, Shade CM, et al. A postsynthetic modification of II–VI semiconductor nanoparticles to create Tb3+ and Eu3+ luminophores. J Phys Chem C, 2013, 117: 14451-14460.

[119]

Chen CJ, Haik Y, Chatterjee J (2004) Nanomagnetics in biotechnology. In: Proceedings of the international workshop on materials analysis and processing in magnetic fields, Tallahassee, Florida, 17–19 March 2004

[120]

Shamim N, Hong L, Hidajat K, et al. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf B Biointerfaces, 2007, 55: 51-58.

[121]

Shamim N, Liang H, Hidajat K, et al. Adsorption, desorption, and conformational changes of lysozyme from thermosensitive nanomagnetic particles. J Colloid Interface Sci, 2008, 320: 15-21.

[122]

Horng HE, Yang SY, Huang Y, et al. Nanomagnetic particles for SQUID-based magnetically labeled immunoassay. IEEE Trans Appl Supercond, 2005, 15: 668-671.

[123]

Parekh K, Upadhyay R. Static and dynamic magnetic properties of monodispersed Mn0.5Zn0.5Fe2O4 nanomagnetic particles. J Appl Phys, 2010, 107: 053907.

[124]

Taketomi S. Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E, 1998, 57: 3073.

[125]

Yoo SK, Lee SY. Geometrical phase effects in biaxial nanomagnetic particles. Phys Rev B, 2000, 62: 5713-5718.

[126]

Chakraverty S, Ghosh B, Kumar S, et al. Magnetic coding in systems of nanomagnetic particles. Appl Phys Lett, 2006, 88: 042501.

[127]

Miller J, Kropf A, Zha Y, et al. The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts. J Catal, 2006, 240: 222-234.

[128]

Carlson C, Hussain SM, Schrand AM, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B, 2008, 112: 13608-13619.

[129]

El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res, 2001, 34: 257-264.

[130]

Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater, 2003, 15: 1957-1962.

[131]

Sreeprasad T, Nguyen P, Kim N, et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. Nano Lett, 2013, 13: 4434-4441.

[132]

Gawande MB, Shelke SN, Zboril R, et al. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res, 2014, 47: 1338-1348.

[133]

Komarneni S, Li D, Newalkar B, et al. Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 2002, 18: 5959-5962.

[134]

Zhao Y, Zhu J, Hong J, et al. Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur J Inorg Chem, 2004, 2004: 4072-4080.

[135]

Cheng W, Cheng HW. Synthesis and characterization of cobalt nano-particles through microwave polyol process. AIChE J, 2009, 55: 1383-1389.

[136]

Komarneni S, Roy R, Li Q. Microwave-hydrothermal synthesis of ceramic powders. Mater Res Bull, 1992, 27: 1393-1405.

[137]

Gao F, Lu Q, Komarneni S. Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater, 2005, 17: 856-860.

[138]

Manzetti S (2017) NANOGEL: Synthesis of cadmium nanoparticles from a carefully selected ionic liquid of Cd2+ and benzoic acid. www.fjordforsk.no/nanogel.php

[139]

Itoh H, Naka K, Chujo Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc, 2004, 126: 3026-3027.

[140]

Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chem Soc Rev, 2008, 37: 1783-1791.

[141]

Yin B, Ma H, Wang S, et al. Electrochemical synthesis of silver nanoparticles under protection of poly (N-vinylpyrrolidone). J Phys Chem B, 2003, 107: 8898-8904.

[142]

Guo D, Li H. Electrochemical synthesis of Pd nanoparticles on functional MWNT surfaces. Electrochem Commun, 2004, 6: 999-1003.

[143]

Manzetti S, Andersen O, Garcia C et al (2016) Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees Celsius and above. Mol Simul 14:1–10

[144]

Manzetti S (2012) Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. Handb Polycycl Aromat Hydrocarb Chem Occur Health Issues 309–330

[145]

Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. Electrochemical synthesis of silver nanoparticles. J Phys Chem B, 2000, 104: 9683-9688.

[146]

Xing G, Wang D, Cheng CJ, et al. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: towards oxide spinterfaces. Appl Phys Lett, 2013, 103: 22402.

[147]

Dutta DP, Mandal BP, Naik R, et al. Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-doped BiFeO3 nanoparticles. J Phys Chem C, 2013, 117: 2382-2389.

[148]

Ghosh S, Yang R, Kaumeyer M, et al. Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing. ACS Appl Mater Interfaces, 2014, 6: 3099-3104.

[149]

Chen D, Yu Y, Huang F, et al. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J Am Chem Soc, 2010, 132: 9976-9978.

[150]

Yang Y, Jin Y, He H, et al. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc, 2010, 132: 13381-13394.

[151]

Pal S, Bhunia A, Jana PP, et al. Microporous La–metal–organic framework (MOF) with large surface area. Chem Eur J, 2015, 21: 2789-2792.

[152]

Dey R, Bhattacharya B, Pachfule P, et al. Flexible dicarboxylate based pillar-layer metal organic frameworks: differences in structure and porosity by tuning the pyridyl based N, N′ linkers. Cryst Eng Commun, 2014, 16: 2305-2316.

[153]

Liu BH, Ding J, Zhong Z, et al. Large-scale preparation of carbon-encapsulated cobalt nanoparticles by the catalytic method. Chem Phys Lett, 2002, 358: 96-102.

[154]

Lowndes DH, Rouleau CM, Thundat T, et al. Silicon and zinc telluride nanoparticles synthesized by pulsed laser ablation: size distributions and nanoscale structure. Appl Surf Sci, 1998, 127: 355-361.

[155]

Mafuné F, Kohno J, Takeda Y, et al. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B, 2000, 104: 9111-9117.

[156]

Mafuné F, Kohno J, Takeda Y, et al. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B, 2000, 104: 8333-8337.

[157]

Becker MF, Brock JR, Cai H, et al. Nanoparticles generated by laser ablation. IEEE Conf Lasers Electro-Opt, 1998, 10(5): 151-152.

[158]

Sen P, Ghosh J, Abdullah A, et al. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J Chem Sci, 2003, 115: 499-508.

[159]

Andrievski R. Modern nanoparticle research in Russia. J Nanoparticle Res, 2003, 5: 415-418.

[160]

Goswami N, Sen P. Water-induced stabilization of ZnS nanoparticles. Solid State Commun, 2004, 132: 791-794.

[161]

Phillips J, Perry WL, Kroenke WJ (2004) Method for producing metallic nanoparticles. U.S. Patent No. 6,689,192, 10 February 2004

[162]

Bica I. Nanoparticle production by plasma. Mater Sci Eng B, 1999, 68: 5-9.

[163]

Swihart MT. Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci, 2003, 8: 127-133.

[164]

Kaneko T, Hatakeyama R, Takahashi S (2013) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. INTECH Open Access Publisher. Chapter 24

[165]

Graneau P. First indication of Ampere tension in solid electric conductors. Phys Lett A, 1983, 97: 253-255.

[166]

Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys, 2009, 11: 3805-3821.

[167]

Sajti CL, Sattari R, Chichkov BN, et al. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J Phys Chem C, 2010, 114: 2421-2427.

[168]

Abdolvand A, Khan SZ, Yuan Y, et al. Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A, 2008, 91: 365-368.

[169]

Wang X, Shephard JD, Dear FC, et al. Optimized nanosecond pulsed laser micromachining of Y-TZP ceramics. J Am Ceram Soc, 2008, 91: 391-397.

[170]

Borysiuk J, Grabias A, Szczytko J, et al. Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon, 2008, 46: 1693-1701.

[171]

Scott JHJ, Majetich SA. Morphology, structure, and growth of nanoparticles produced in a carbon arc. Phys Rev B, 1995, 52: 12564.

[172]

Delaunay JJ, Hayashi T, Tomita M, et al. CoPt-C nanogranular magnetic thin films. Appl Phys Lett, 1997, 71: 3427-3429.

[173]

Li T, Yan H, Wang H, et al. CoPt/C nanogranular magnetic thin film. Int J Mod Phys B, 2005, 19: 2261-2271.

[174]

Lu Y, Zhu Z, Liu Z. Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon, 2005, 43: 369-374.

[175]

Hayashi T, Hirono S, Tomita M, et al. Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon, 1997, Cambridge: Cambridge University Press 33

[176]

Harris P, Tsang S. A simple technique for the synthesis of filled carbon nanoparticles. Chem Phys Lett, 1998, 293: 53-58.

[177]

Britz DA, Khlobystov AN. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev, 2006, 35: 637-659.

[178]

Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem, 2011, 13: 2638-2650.

[179]

Shankar SS, Ahmad A, Pasricha R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem, 2003, 13: 1822-1826.

[180]

Yang X, Li Q, Wang H, et al. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanoparticle Res, 2010, 12: 1589-1598.

[181]

Huang J, Lin L, Li Q, et al. Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res, 2008, 47: 6081-6090.

[182]

Sharma B, Purkayastha DD, Hazra S, et al. Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett, 2014, 116: 94-97.

[183]

Kumar B, Smita K, Cumbal L. Biofabrication of nanogold from the flower extracts of Lantana camara. IET Nanobiotechnol, 2016, 10: 154-157.

[184]

Paul B, Bhuyan B, Purkayastha DD, et al. Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater Lett, 2015, 148: 37-40.

Funding

Norwegian Research Council, SkatteFUNN scheme(264086, "Nanoactivities")

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/