PDF
Abstract
In this study, an air-bearing capacitive linear variable differential transformer (LVDT)-like contact sensor with a rounded diamond tip was mounted to a desktop machine tool to construct an on-machine (OM) measuring system. The measuring system was capable of decoding the digital signals of linear encoders mounted on the machine tool and acquiring the analog signal of the contact sensor. To verify the measuring system, experimental examinations were performed on an oxygen-free copper (OFC) convex aspheric mold with a diameter of 5 mm and a curve height of 0.46 mm. The acquired signals were processed by the implemented Gaussian regression filter (GRF), removing the tilt of measured profile, and compensating for the radius of probe tip. The profile obtained was compared to that measured using a commercially available device, and a maximum deviation of 14.6 μm was found for the rough cutting. The compensation cutting was then performed according to the form error of OM measurement. As a result, the PV form error compared with the designed profile was reduced from 19.2 μm over a measured diameter of 4 mm to 9.7 μm over a measured diameter of 3.1 mm, or a percentage improvement of 35.4% in form accuracy. Through the examination for aspheric machining, the effectiveness of the implemented OM measuring system was demonstrated, and the technical details of system implementation were presented. Further improvement was suggested to reduce the diameter of probe tip and measuring force.
Keywords
On-machine (OM) measurement
/
Gaussian regression filter
/
Aspheric ultraprecision machining
/
Linear variable differential transformer (LVDT)
/
Meso-machining
Cite this article
Download citation ▾
Yung-Tien Liu, You-Liang Kuo, Da-Wei Yan.
System integration for on-machine measurement using a capacitive LVDT-like contact sensor.
Advances in Manufacturing, 2017, 5(1): 50-58 DOI:10.1007/s40436-016-0169-y
| [1] |
Liu YT, Chang WC, Yamagata Y. A study on optimal compensation cutting for an aspheric surface using the Taguchi method. CIRP J Manuf Sci Technol, 2010, 3(1): 40-48.
|
| [2] |
Liu YT, Zhang L. An investigation into the aspheric ultraprecision machining using the response surface methodology. Prec Eng, 2016, 44: 203-210.
|
| [5] |
Kiyono S, Gao W, Kamada O. On-machine measurement of mirror profile- measurement principle and basic performance of the developed sensor. Jap J Prec Eng, 1992, 58(2): 247-252.
|
| [6] |
Fan KC. A non-contact automatic measurement for free-form surface profiles. Comput Integr Manuf Syst, 1997, 10(4): 277-285.
|
| [7] |
Suzuki H, Kodera S, Sugimoto K, et al. Development of an on-machine aspherical form measurement system. Jpn J Prec Eng, 1995, 61(11): 1594-1598.
|
| [8] |
Chen FJ, Yin SH, Huang H, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf, 2010, 50: 480-486.
|
| [9] |
Arai Y, Shibuya A, Yoshikawa Y, et al. Online measurement of micro-aspheric surface profile with compensation of scanning error. Key Eng Mater, 2008, 381–382: 175-178.
|
| [10] |
Li B, Li F, Liu H, et al. A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces. Meas Sci Technol, 2014, 25(1): 303-309.
|
| [11] |
Morita S, Yamagata Y, Guo J. High speed non-contact on-machine profile measurement for ultrahigh precision machining of large free-form optical surface. J Jpn Soc Abras Technol, 2014, 58: 705-709.
|
| [12] |
Zhu WL, Yang S, Ju BF, et al. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate. Meas Sci Technol, 2015, 26(7): 075003.
|
| [13] |
Raja J, Muralikrishnan B, Fu S. Recent advances in separation of roughness, waviness and form. Prec Eng, 2002, 26(2): 222-235.
|
| [14] |
Lou S, Zeng W, Jiang X et al (2012) Comparison of robust filtration techniques in geometrical metrology. In: Proceedings of the 18th international conference on automation & computing, 8 September, Loughborough University, Leicestershire
|
| [15] |
Brinkmann S, Bodschwinna H, Lemke HW. Accessing roughness in three-dimensions using Gaussian regression filtering. Int J Mach Tools Manuf, 2001, 41(13): 2153-2161.
|
| [16] |
Brinkmann S, Raja J. Computational surface and roughness metrology, 2009, New York: Springer 67-76.
|
| [17] |
Krystek M. A fast Gauss filtering algorithm for roughness measurements. Prec Eng, 1996, 19(2–3): 198-200.
|
Funding
Ministry of Science and Technology, Taiwan http://dx.doi.org/10.13039/501100004663(MOST 103-2221-E-327-025)