Laser conditioning and structuring of grinding tools – a review

Bahman Azarhoushang , Ali Zahedi

Advances in Manufacturing ›› 2017, Vol. 5 ›› Issue (1) : 35 -49.

PDF
Advances in Manufacturing ›› 2017, Vol. 5 ›› Issue (1) : 35 -49. DOI: 10.1007/s40436-016-0167-0
Article

Laser conditioning and structuring of grinding tools – a review

Author information +
History +
PDF

Abstract

The conditioning of grinding tools is one of the most important factors for achieving an optimal grinding process. It influences the grinding forces and temperatures and, therefore, the achievable material removal rate, dimensional accuracy and the surface integrity of the workpiece. Furthermore, the roundness, profile accuracy and the wear of the grinding tools are strongly influenced by the conditioning process. The conditioning process should be matched to the abrasive type and the bonding of the grinding tool. Laser conditioning is a promising unconventional and non-contact method, which is able to condition all kinds of abrasives and bonding types. The main advantages of this novel method are no tool wear, good repeatability and controllability, high precision and a relatively short process time. Additionally, using this method grinding tools can be micro-structured. This paper reviews the literature on the laser conditioning of grinding tools, covering the associated setups, wheel conditioning and structuring mechanisms, and experimental results. It also discusses the technical barriers that have to be overcome before laser conditioning can be fully integrated into manufacturing.

Keywords

Laser conditioning / Structuring / Dressing / Truing / Grinding tools / Grinding

Cite this article

Download citation ▾
Bahman Azarhoushang, Ali Zahedi. Laser conditioning and structuring of grinding tools – a review. Advances in Manufacturing, 2017, 5(1): 35-49 DOI:10.1007/s40436-016-0167-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Daneshi A, Jandaghi N, Tawakoli T. Effect of dressing on internal cylindrical grinding. Procedia CIRP, 2014, 14: 37-41.

[2]

Rowe WB. Rowe WB. Grinding wheel dressing. Principles of modern grinding technology, 2014, 2 Waltham: William Andrew 63-82.

[3]

Shih AJ. An experimental investigation of rotary diamond truing and dressing of vitreous bond wheels for ceramic grinding. Int J Mach Tools Manuf, 2000, 40: 1755-1774.

[4]

Wegener K, Hoffmeister HW, Karpuschewski B, et al. Conditioning and monitoring of grinding wheels. CIRP Ann Manuf Technol, 2011, 60: 757-777.

[5]

Linke BS. Wirkmechanismen beim Abrichten keramisch gebundener Schleifscheiben, 2007, Aachen: Shaker

[6]

Klocke F, Kuchle A. Grinding, honing, lapping, 2009, Berlin: Springer

[7]

Kitzig H, Tawakoli T, Azarhoushang B. A novel ultrasonic-assisted dressing method of electroplated grinding wheels via stationary diamond dresser. Int J Adv Manuf Technol, 2016, 86(1): 1-8.

[8]

Azarhoushang B, Rasifard A. Das Abrichten als ein integraler Bestandteil des Schleifprozesses. Diam Bus, 2014, 49: 66-73.

[9]

Marinescu ID. Handbook of machining with grinding wheels, 2007, Boca Raton: CRC

[10]

Westkämper E. Grinding assisted by Nd: YAG lasers. CIRP Ann Manuf Technol, 1995, 44: 317-320.

[11]

Malkin S, Guo C. Grinding technology: theory and applications of machining with abrasives, 2008, 2 New York: Industrial Press

[12]

Tawakoli T, Rasifard A. Jackson JM, Davim PJ. Dressing of grinding wheels. Machining with abrasives, 2011, Boston: Springer, US 181-244.

[13]

Zahedi A, Azarhoushang B, Akbari J, et al. Optimization and application of laser-dressed cBN grinding wheels. Adv Mater Res, 2016, 1136: 90-96.

[14]

Schöpf M, Beltrami I, Boccadoro M, et al. ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools. CIRP Ann Manuf Technol, 2001, 50: 125-128.

[15]

Wei C, Hu D, Xu K, et al. Electrochemical discharge dressing of metal bond micro-grinding tools. Int J Mach Tools Manuf, 2011, 51: 165-168.

[16]

Pavel R, Pavel M, Marinescu I. Investigation of pre-dressing time for ELID grinding technique. J Mater Process Technol, 2004, 149: 591-596.

[17]

Rabiey M (2011) Dry grinding with CBN wheels, the effect of structuring. Dissertation, Universität Stuttgart

[18]

Azarhoushang B (2011) Intermittent grinding of ceramic matrix composites: unterbrochenes Schleifen von keramischen Faserverbundwerkstoffen. Dissertation, Stuttgart University, Shaker Publication

[19]

Walter C, Komischke T, Kuster F, et al. Laser-structured grinding tools—generation of prototype patterns and performance evaluation. J Mater Process Technol, 2014, 214: 951-961.

[20]

Tawakoli T (2014) Moderne schleiftechnologie und feinstbearbeitung 2014: neue entwicklungen und trends aus forschung und praxis. In: The seminar of moderne schleiftechnologie und feinstbearbeitung. Stuttgart, Volkan

[21]

Zahedi A, Azarhoushang B (2016) Strukturieren und profilieren mittels laser: moderne schleiftechnologie und feinstbearbeitung. In: The seminar of neue entwicklungen und trends aus forschung und praxis. Volkan

[22]

Tawakoli T, Rabiey M. An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach Sci Tech, 2008, 12: 514-528.

[23]

Tawakoli T, Heisel U, Lee DH, et al. An experimental investigation on the characteristics of cylindrical plunge dry grinding with structured cBN wheels. Procedia CIRP, 2012, 1: 399-403.

[24]

Nakayama K, Takagi J, Abe T. Grinding wheel with helical grooves—an attempt to improve the grinding performance. CIRP Ann Manuf Technol, 1977, 26: 133-138.

[25]

Azarhoushang B. Das abrichten als integraler bestandteil des schleifprozesses: unkonventionelle Abrichtprozesse. Diam Bus, 2014, 50: 82-89.

[26]

Kong MC, Miron CB, Axinte DA, et al. On the relationship between the dynamics of the power density and workpiece surface texture in pulsed laser ablation. CIRP Ann Manuf Technol, 2012, 61: 203-206.

[27]

Yang J, Sun S, Brandt M, et al. Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J Mater Process Technol, 2010, 210: 2215-2222.

[28]

Tangwarodomnukun V, Likhitangsuwat P, Tevinpibanphan O, et al. Laser ablation of titanium alloy under a thin and flowing water layer. Int J Mach Tools Manuf, 2015, 89: 14-28.

[29]

Ahn DG, Byun KW. Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd: YAG laser. Trans Nonferrous Metals Soc China, 2009, 19: s32-s39.

[30]

Anderson M, Patwa R, Shin YC. Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf, 2006, 46: 1879-1891.

[31]

Fabis PM. Laser machining of CVD diamond: chemical and structural alteration effects. Surf Coat Technol, 1996, 82: 320-325.

[32]

Butler-Smith PW, Axinte DA, Daine M. Ordered diamond micro-arrays for ultra-precision grinding—an evaluation in Ti-6Al-4V. Int J Mach Tools Manuf, 2011, 51: 54-66.

[33]

Kovalenko V, Yao J, Zhang Q, et al. Laser milling of the intractable materials. Procedia CIRP, 2013, 6: 504-509.

[34]

Samant AN, Dahotre NB. Laser machining of structural ceramics—a review. J Eur Ceram Soc, 2009, 29: 969-993.

[35]

Dhupal D, Doloi B, Bhattacharyya B. Pulsed Nd: YAG laser turning of micro-groove on aluminum oxide ceramic (Al2O3). Int J Mach Tools Manuf, 2008, 48: 236-248.

[36]

Fortunato A, Guerrini G, Melkote SN, et al. A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride. CIRP Ann Manuf Technol, 2015, 64: 189-192.

[37]

Kang DW, Lee CM. A study on the development of the laser-assisted milling process and a related constitutive equation for silicon nitride. CIRP Ann Manuf Technol, 2014, 63: 109-112.

[38]

Zahedi A, Tawakoli T, Akbari J, et al. Conditioning of vitrified bond CBN grinding wheels using a picosecond laser. Adv Mater Res, 2014, 1017: 573-579.

[39]

Gadag S. Studying the mechanism of micromachining by short pulsed laser, 2011, Dallas: Southern Methodist University

[40]

Giridhar MS, Seong K, Schuelzgen A, et al. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Appl Opt, 2004, 43: 4584-4589.

[41]

Varel H, Ashkenasi D, Rosenfeld A, et al. Micromachining of quartz with ultrashort laser pulses. Appl Phys A, 1997, 65: 367-373.

[42]

Zahedi A, Tawakoli T, Azarhoushang B, et al. Picosecond laser treatment of metal-bonded CBN and diamond superabrasive surfaces. Int J Adv Manuf Technol, 2014, 76: 1479-1491.

[43]

Chen G, Deng H, Zhou X, et al. Online tangential laser profiling of coarse-grained bronze-bondeddiamond wheels. Int J Adv Manuf Technol, 2015, 79(9): 1477-1482.

[44]

Wang XY, Wu YB, Wang J, et al. Absorbed energy in laser truing of a small vitrified CBN grinding wheel. J Mater Process Technol, 2005, 164–165: 1128-1133.

[45]

Ramesh BN, Radhakrishnan V, Murti YVGS. Investigations on laser dressing of grinding wheels—Part I: preliminary study. J Eng Ind, 1989, 111: 244.

[46]

Ramesh BN, Radhakrishnan V. Investigations on laser dressing of grinding wheels—Part II: grinding performance of a laser dressed aluminum oxide wheel. J Eng Ind, 1989, 111: 253.

[47]

Ramesh BN, Radhakrishnan V. Influence of dressing feed on the performance of laser dressed Al2O3 wheel in wet grinding. Int J Mach Tools Manuf, 1995, 35: 661-671.

[48]

Xie XZ, Chen GY, Li LJ. Dressing of resin-bonded superabrasive grinding wheels by means of acousto-optic Q-switched pulsed Nd:YAG laser. Opt Laser Technol, 2004, 36: 409-419.

[49]

Hosokawa A, Ueda T, Yunoki T. Laser dressing of metal bonded diamond wheel. CIRP Ann Manuf Technol, 2006, 55: 329-332.

[50]

Khangar AA, Kenik EA, Dahotre NB. Microstructure and microtexture in laser-dressed alumina grinding wheel material. Ceram Int, 2005, 31: 621-629.

[51]

Chen G, Mei L, Zhang B, et al. Experiment and numerical simulation study on laser truing and dressing of bronze-bonded diamond wheel. Opt Lasers Eng, 2010, 48: 295-304.

[52]

Timmer JH (2001) Laserkonditionieren von CBN- und Diamantschleifscheiben. Dissertation, Braunschweig University, Vulkan-Verl., Essen

[53]

Kang RK, Yuan JT, Zhang YP, et al. Truing of diamond wheels by laser. KEM, 2001, 202–203: 137-142.

[54]

Chen M, Sun F, Lee Y, et al. Laser-assisted grinding wheel dressing (II)—experimental researches. J Mater Sci Technol, 2003, 19: 167-168.

[55]

Chen X, Feng ZJ, Pashby IR. A study on laser cleaning of Al2O3 grinding wheels. KEM, 2004, 257–258: 359-364.

[56]

Jackson MJ, Robinson GM, Chen X. Laser surface preparation of vitrified grinding wheels. J Mater Eng Perform, 2006, 15(2): 247-250.

[57]

Dold C, Transchel R, Rabiey M, et al. A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources. CIRP Ann Manuf Technol, 2011, 60: 363-366.

[58]

Khangar A, Dahotre NB, Jackson MJ, et al. Laser dressing of alumina grinding wheels. J Mater Eng Perform, 2006, 15(2): 178-181.

[59]

Rabiey M, Walter C, Kuster F, et al. Dressing of hybrid bond CBN wheels using short-pulse fiber laser. SV-JME, 2012, 58: 462-469.

[60]

Walter C, Rabiey M, Warhanek M, et al. Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fibre laser. CIRP Ann Manuf Technol, 2012, 61: 279-282.

[61]

Khangar A, Dahotre NB. Morphological modification in laser-dressed alumina grinding wheel material for microscale grinding. J Mater Process Technol, 2005, 170: 1-10.

[62]

von Witzendorff P, Stompe M, Moalem A, et al. Dicing of hard and brittle materials with on-machine laser-dressed metal-bonded diamond blades. Precis Eng, 2014, 38: 162-167.

[63]

Guo B, Zhao Q, Fang X. Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels. J Mater Process Technol, 2014, 214: 1045-1051.

[64]

Walter C, Komischke T, Weingärtner E, et al. Structuring of CBN grinding tools by ultrashort pulse laser ablation. Procedia CIRP, 2014, 14: 31-36.

[65]

Stutz GE, Marshall GF. Handbook of optical and laser scanning, 2012, 2 Boca Raton: CRC

[66]

Azarhoushang B, Zahedi A (2016) Laserabrichten von superabrasiven Schleifwerkzeugen: moderne schleiftechnologie und feinstbearbeitung. In: The Seminar of Neue Entwicklungen und Trends aus Forschung und Praxis, Volkan

[67]

Jackson MJ, Khangar A, Chen X, et al. Laser cleaning and dressing of vitrified grinding wheels. J Mater Process Technol, 2007, 185: 17-23.

[68]

Yung KC, Chen GY, Li LJ. The laser dressing of resin-bonded CBN wheels by a Q-switched Nd:YAG laser. Int J Adv Manuf Technol, 2003, 22(7): 541-546.

AI Summary AI Mindmap
PDF

705

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/