Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies

J. Bellmann , J. Lueg-Althoff , S. Schulze , S. Gies , E. Beyer , A. E. Tekkaya

Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (4) : 322 -339.

PDF
Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (4) : 322 -339. DOI: 10.1007/s40436-016-0162-5
Article

Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies

Author information +
History +
PDF

Abstract

Magnetic pulse welding (MPW) is a fast and clean joining technique that offers the possibility to weld dissimilar metals, e.g., aluminum and steel. The high-speed collision of the joining partners is used to generate strong atomic bonded areas. Critical brittle intermetallic phases can be avoided due to the absence of external heat. These features attract the notice of industries performing large scale productions of dissimilar metal joints, like automotive and plant engineering. The most important issue is to guarantee a proper weld quality. Numerical simulations are often used to predict the welding result a priori. Nevertheless, experiments and the measurement of process parameters are needed for the validation of these data. Sensors nearby the joining zone are exposed to high pressures and intense magnetic fields which hinder the evaluation of the electrical output signals. In this paper, existing analysis tools for process development and quality assurance in MPW are reviewed. New methods for the process monitoring and weld characterization during and after MPW are introduced, which help to overcome the mentioned drawbacks of established technologies. These methods are based on optical and mechanical measuring technologies taking advantage of the hypervelocity impact flash, the impact pressure and the deformation necessary for the weld formation.

Keywords

Magnetic pulse welding (MPW) / Process monitoring / Collision conditions / Dissimilar metal joining / Materials testing

Cite this article

Download citation ▾
J. Bellmann, J. Lueg-Althoff, S. Schulze, S. Gies, E. Beyer, A. E. Tekkaya. Measurement and analysis technologies for magnetic pulse welding: established methods and new strategies. Advances in Manufacturing, 2016, 4(4): 322-339 DOI:10.1007/s40436-016-0162-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lysenko D, Ermolaev V, Dudin A (1970) Methods of pressure welding. US 3520049

[2]

Bellmann J, Lueg-Althoff J, Goebel G et al (2016) Effects of surface coatings on the joint formation during magnetic pulse welding in tube-to-cylinder configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 279–288

[3]

Botros K, Groves T. Fundamental impact welding parameters: an experimental investigation using a 76-mm powder cannon. J Appl Phys, 1980, 51(7): 3706-3714.

[4]

Groche P, Wagner M, Pabst C, et al. Development of a novel test rig to investigate the fundamentals of impact welding. J Mater Process Technol, 2014, 214(10): 2009-2017.

[5]

Cuq-Lelandais J, Ferreira S, Avrillaud G et al (2014) Magnetic pulse welding: welding windows and high velocity impact simulations. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming, p 199–206

[6]

Geyer M, Rebensdorf A, Boehm S (2014) Influence of the boundary layer in magnetic pulse sheet welds of aluminium to steel. In: Huh H, Tekkaya AE (eds) Proceedings of the international conference on high speed forming, p 51–60

[7]

Gafri O, Izhar A, Livshitz Y et al (2006) Magnetic pulse acceleration. In: Kleiner M (ed) Proceedings of the 2nd international conference on high speed forming, p 33–40

[8]

Shribman V (2008) Magnetic pulse welding for dissimilar and similar materials. In: Kleiner M, Tekkaya AE (eds) Proceedings of the 3rd international conference on high speed forming, p 13–22

[9]

Mori K, Bay N, Fratini L, et al. Joining by plastic deformation. CIRP Ann Manuf Technol, 2013, 62(2): 673-694.

[10]

Groche P, Wohletz S, Brenneis M, et al. Joining by forming: a review on joint mechanisms, applications and future trends. J Mater Process Technol, 2014, 214(10): 1972-1994.

[11]

Kapil A, Sharma A. Magnetic pulse welding: an efficient and environmentally friendly multi-material joining technique. J Clean Prod, 2015, 100: 35-58.

[12]

Power Electronic Measurements Ltd. (2002) CWT current probe—application notes. http://pemuk.com/products/cwt-current-probe/cwt.aspx. Accessed 10 May 2016

[13]

Dietz H, Lippmann H. Messung der magnetischen Induktion in einer Magneform-Kompressionsspule. Elektrotech Z, 1969, 90(3): 51-54.

[14]

Bauer D (1967) Ein neuartiges Messverfahren zur Bestimmung der Kraefte, Arbeiten, Formaenderungen, Formaenderungsgeschwindigkeiten und Formaenderungsfestigkeiten beim Aufweiten zylindrischer Werkstuecke durch schnellveraenderliche magnetische Felder, Dr.-Ing.-Dissertation, Technische Hochschule Hannover, Hannover

[15]

Beerwald C (2004) Grundlagen der Prozessauslegung und -gestaltung bei der elektromagnetischen Umformung. Dissertation, Technische Universitaet Dortmund

[16]

Veenaas S, Vollertsen F, Krueger M et al (2016) Determination of forming speed at a laser shock stretch drawing process. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming 2016, p 105–114

[17]

Strand OT, Goosman DR, Martinez C, et al. Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum, 2006, 77: 83108.

[18]

Barker LM, Hollenbach RE. Laser interferometer for measuring high velocities of any reflecting surface. J Appl Phys, 1972, 43(11): 4669-4675.

[19]

Goosman DR (1996) The multibeam Fabry-Pérot velocimeter: efficient measurement of high velocities. Sci Technol Rev (7):12–19

[20]

Zhang Y, L’Eplattenier P, Taber G et al (2008) Numerical simulation and experimental study for magnetic pulse welding process on AA6061-T6 and Cu101 sheet. In: The 10th international LS-DYNA users conference, Dearborn

[21]

Jaeger A, Tekkaya AE (2012) Online measurement of the radial workpiece displacement in electromagnetic forming subsequent to hot aluminum extrusion. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 13–22

[22]

Winkler R. Hochgeschwindigkeitsbearbeitung: Grundlagen und technische Anwendung elektrisch erzeugter Schockwellen und Impulsmagnetfelder, 1973, Berlin: VEB Verlag Technik

[23]

Watanabe M, Kumai S, Hagimoto G et al (2009) Interfacial microstructure of aluminium/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50(6):1279–1285

[24]

Rebensdorf A, Boehm S (2016) Increase of the reproducibility of joints welded with magnetic pulse technology using graded surface topographies. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 125–136

[25]

Pabst C, Groche P (2014) Electromagnetic pulse welding: process insights by high speed imaging and numerical simulation. In: Huh H, Tekkaya AE (eds) Proceedings of the 6th international conference on high speed forming 2014, p 77–88

[26]

Poynton WA, Travis FW, Johnson W. The free radial expansion of thin cylindrical brass tubes using explosive gas mixtures. Int J Mech Sci, 1968, 10: 385-401.

[27]

Stern A, Becher O, Nahmany M, et al. Jet composition in magnetic pulse welding: Al-Al and Al-Mg couples. Weld J, 2015, 94: 257-284.

[28]

Kakizaki S, Watanabe M, Kumaji S. Simulation and experimental analysis of metal jet emission and weld interface morphology in impact welding. Mater Trans, 2011, 52(5): 1003-1008.

[29]

Bergmann OR (1984) The scientific basis of metal bonding with explosives. In: The 8th international ASME conference on high energy rate fabrication 1984, p 197–202

[30]

Friichtenicht JF, Slattery JC (1963) Ionization associated with hypervelocity impact. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 591–612

[31]

Eichhorn G. Analysis of the hypervelocity impact process from impact flash measurements. Planet Space Sci, 1976, 24(8): 771-781.

[32]

Lueg-Althoff J, Schilling B, Bellmann J et al (2016) Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configuration. In: Tekkaya AE, Kleiner M (eds) Proceedings of the 7th international conference on high speed forming, p 259–268

[33]

Pond RB, Mombley C, Glass CM (1963) Energy balances in hypervelocity penetration. In: Eichelberger RJ, Dittrich WH, Atkins WW (eds) Proceedings of the sixth symposium on hypervelocity impact, vol 2, p 401–419

[34]

Hill R. The mathematical theory of plasticity, 1950, Oxford: Clarendon Press.

[35]

Lorenz A, Lueg-Althoff J, Bellmann J, et al. Workpiece positioning during magnetic pulse welding of aluminum-steel joints. Weld J, 2016, 95(3): 101-109.

[36]

Sutton MA, Schreier HW, Orteu JJ. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, 2009, New York: Springer

[37]

Erlenmaier W, Kappes J, Tatarczyk A et al (2014) Efficient punching using integrated flattening. In: Liewald M (ed) Neuere Entwicklungen in der Blechumformung. Fellbach, p 81–97

[38]

Hokari H, Sato T, Kawauchi K, et al. Magnetic impulse welding of aluminium tube and copper tube with various core materials. Weld Int, 1998, 12(8): 619-626.

[39]

DIN Deutsches Institut fuer Normung e.V. (2013) Welding and allied processes—classification of geometric imperfections in metallic materials—Part 2: welding with pressure (DIN EN ISO 6520)

[40]

DIN Deutsches Institut fuer Normung e.V. (1982) Testing of sandwiches; climbing drum peel test (DIN 53295)

[41]

DIN Deutsches Institut fuer Normung e.V. (1979) Testing of adhesives for metals and adhesively bonded metal joints; test specimens; manufacturing (DIN 53281)

[42]

Broeckhove J, Willemsens L (2010) Experimental research on magnetic pulse welding of dissimilar metals. Master Thesis, Universitaet Gent

[43]

Raoelison RN, Rachik M, Buiron N et al (2012) Assessment of gap and charging voltage influence on mechanical behaviour of joints obtained by magnetic pulse welding. In: Tekkaya AE, Daehn GS, Kleiner M (eds) Proceedings of the 5th international conference on high speed forming 2012, p 207–216

[44]

Sharafiev S, Wagner MF, Pabst C et al (2016) Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints. In: Lampke T, Wagner G, Wagner M (eds) Tagungsband zum 18. Werkstofftechnischen Kolloqium, p 294–298

[45]

Ben-Artzy A, Stern A, Frage N, et al. Interface phenomena in aluminium-magnesium magnetic pulse welding. Sci Technol Weld Join, 2008, 13(4): 402-408.

[46]

Ben-Artzy A, Stern A, Frage N et al (2010) Wave formation mechanism in magnetic pulse welding. Int J Impact Eng. doi:10.1016/j.ijimpeng.2009.07.008

[47]

Raoelison RN, Sapanathan T, Buiron N, et al. Magnetic pulse welding of Al/Al and Al/Cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J Manuf Process, 2015, 20: 112-127.

[48]

Goebel G, Kaspar J, Herrmannsdoerfer T et al (2010) Insights into intermetallic phases on pulse welded dissimilar metal joints. In: Babusci K, Daehn G, Marré M et al (eds) Proceedings of the 4th international conference on high speed forming 2010, p 127–136

[49]

Tekkaya AE. An improved relationship between Vickers hardness and yield stress for cold formed materials and its experimental verification. Ann CIRP, 2000, 49(1): 205-208.

[50]

Zhang Y, Babu S, Prothe C, et al. Application of high velocity impact welding at varied different length scales. J Mater Process Technol, 2010

[51]

Kore SD, Date PP, Kulkarni SV, et al. Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int J Adv Manuf Technol, 2011, 54: 949-955.

[52]

Bmax (2016) Magnetic pulse welding—the ultimate solution for driveshaft manufacturers. Accessed 2 March 2016

[53]

Hahn M, Weddeling C, Lueg-Althoff J, et al. Analytical approach for magnetic pulse welding of sheet connections. J Mater Process Technol, 2016, 230: 131-142.

[54]

DIN Deutsches Institut fuer Normung e.V. (1978) Testing of plated steels; determination of shearing strength between cladding material and base material in shearing test (DIN 50162)

[55]

Barreiro P, Schulze V, Loehe D et al (2006) Strength of tubular joints made by electromagnetic compression at quasistatic and cyclic loading. In: Kleiner M (ed) Proceedings of the 2nd international conference: ICHSF 2006

[56]

Fahrenwaldt HJ, Schuler V, Twrdek J (2014) Praxiswissen Schweißtechnik: Werkstoffe, Prozesse, Fertigung, 5th edn. Springer Vieweg, Wiesbaden

[57]

Shaw RE. Ultrasonic testing procedures, technician skills, and qualifications. J Mater Civ Eng, 2002, 14(1): 62-67.

[58]

Hellier C. Handbook of nondestructive evaluation, 2013, 2 New York: McGraw-Hill

[59]

Santos TG, Sorger G, Vilaça P, et al. A non-conventional technique for evaluating welded joints based on the electrical conductivity. Key Eng Mater, 2014, 611–612: 671-676.

Funding

Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659(BE 1875/30-2)

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/