The effects of forging pressure and temperature field on residual stresses in linear friction welded Ti6Al4V joints
Ying Fu , Wen-Ya Li , Xia-Wei Yang , Tie-Jun Ma , Achilles Vairis
Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (4) : 314 -321.
The effects of forging pressure and temperature field on residual stresses in linear friction welded Ti6Al4V joints
Linear friction welding (LFW), as a solid state joining process, has been developed to manufacture and repair blisks in aeroengines. The residual stresses after welding may greatly influence the performance of the welded components. In this paper, the distribution of residual stresses in Ti6Al4V joints after LFW was investigated with numerical simulations. The effects of applied forging pressure and temperature field at the end of the oscillating stages on the residual stresses within the joints were investigated. The results show that, the residual tensile stresses at the welded interface in the y-direction are the largest, while the largest compressive stresses being present at the flash root in the z-direction. Furthermore, the forging pressure and temperature field at the end of the oscillating stages strongly affect the magnitude of the residual stresses. The larger forging pressure produced lower residual stresses in the weld plane in all three directions (x-, y-, and z-directions). Larger variance, σ, which decides the Gaussian distribution of the temperature field, also yields lower residual stresses. There is good agreement between simulation results and experimental data.
Linear friction welding (LFW) / Modeling / Residual stress / Forging pressure
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
/
| 〈 |
|
〉 |