Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece

Jan C. Aurich , Marco Zimmermann , Stefan Schindler , Paul Steinmann

Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (3) : 225 -236.

PDF
Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (3) : 225 -236. DOI: 10.1007/s40436-016-0152-7
Article

Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece

Author information +
History +
PDF

Abstract

Aluminum metal matrix composites (Al-MMCs) are difficult to machine. The reinforcement of aluminum using ceramic particles accelerates tool wear. Moreover, demanded machining accuracies or properties of the surface layer are difficult to achieve. In the present study, the effect of silicon carbide reinforcement particles on the surface layer of the workpiece was investigated using multiple cutting conditions for dry turning. Three differently reinforced Al-MMCs regarding the volume percentage (17% and 30%) and the particle size (0.6 µm and 3 µm) and their non-reinforced matrix were considered as the workpiece materials. The reinforcement and the cutting condition affect the results of turning. A greater particle volume percent improves the surface roughness and decreases the tensile stress in the surface. The smaller particle size caused a lower tensile stress in the surface. A general effect of the particle size on the workpiece roughness can not be concluded. The most important cutting parameter for the surface layer of the workpiece is the feed. Greater feeds decrease the tensile stress in the surface, but deteriorate the surface quality.

Keywords

Aluminum metal matrix composite (Al-MMC) / Forces / Workpiece roughness / Surface / Residual stress

Cite this article

Download citation ▾
Jan C. Aurich, Marco Zimmermann, Stefan Schindler, Paul Steinmann. Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Advances in Manufacturing, 2016, 4(3): 225-236 DOI:10.1007/s40436-016-0152-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bian R, He N, Li L, et al. Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol, 2014, 71(1–4): 411-419.

[2]

Tomac N, Tonnessen K. Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol, 1992, 42(1): 55-58.

[3]

Wang T, Xie L, Wang X, et al. PCD tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int J Adv Manuf Technol, 2015, 78(9): 1445-1453.

[4]

Pramanik A, Zhang LC, Arsecularatne JA. Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manuf, 2008, 48(15): 1613-1625.

[5]

Aurich JC, Zimmermann M, Schindler S, et al. Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol, 2016, 82(5): 1317-1334.

[6]

Yang Y, Wu Q, Zhan Z, et al. An experimental study on milling of high-volume fraction SiCp/Al composites with PCD tools of different grain size. Int J Adv Manuf Technol, 2015, 79(9): 1699-1705.

[7]

El-Gallab M, Sklad M. Machining of Al/SiC particulate metal-matrix composites Part I: tool performance. J Mater Process Technol, 1998, 83(1–3): 151-158.

[8]

Shahzad MA (2010) Analysis of the machinability of an aluminum matrix composite material. Dissertation, University of Kaiserslautern

[9]

Wang T, Xie L, Wang X. Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol, 2015, 79(5): 1185-1194.

[10]

Ge YF, Xu JH, Yang H, et al. Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol, 2008, 203(1–3): 166-175.

[11]

El-Gallab M, Sklad M. Machining of Al/SiC particulate metal matrix composites. Part II: workpiece surface integrity. J Mater Process Technol, 1998, 83(1–3): 277-285.

[12]

Cheung CF, Chan KC, To S, et al. Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites. Scripta Mater, 2002, 47(2): 77-82.

[13]

Kilickap E, Cakir O, Aksoy M, et al. Study of tool wear and surface roughness in machining of homogenized SiCp reinforced aluminium metal matrix composite. J Mater Process Technol, 2005, 164–165: 862-867.

[14]

Teti R. Machining of composite materials. CIRP Ann Manuf Technol, 2002, 51(2): 611-634.

[15]

Dabade UA, Joshi SS, Balasubramaniam R, et al. Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol, 2007, 192–193: 166-174.

[16]

Quan Y, Ye B. The effect of machining on the surface properties of SiC/Al composites. J Mater Process Technol, 2003, 138(1–3): 464-467.

[17]

Schindler S, Zimmermann M, Aurich JC, et al. Thermo-elastic deformations of the workpiece when dry turning aluminum alloys-a finite element model to predict thermal effects in the workpiece. CIRP J Manuf Sci Technol, 2014, 7(3): 233-245.

[18]

Sikder S, Kishawy HA. Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci, 2012, 59(1): 95-103.

[19]

Dabade UA, Dapkekar D, Joshi SS. Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites. Intern J Mach Tool Manuf, 2009, 49(9): 690-700.

[20]

Klocke F, König W. Fertigungsverfahren, Drehen, Fräsen, Bohren, 2008, Berlin: Springer

[21]

Karthikeyan R, Ganesan G, Nagarazan RS, et al. A critical study on machining of Al/SiC composites. Mater Manuf Process, 2001, 16(1): 47-60.

[22]

Nakayama K, Arai M, Kanda T. Machining characteristics of hard materials. CIRP Ann Manuf Technol, 1988, 37(1): 89-92.

[23]

Schulze V, Zanger F, Michna J, et al. Investigation of the machining behavior of metal matrix composites (MMC) using chip formation simulation. Adv Mat Res, 2011, 223: 20-29.

[24]

Denkena B, Biermann D. Cutting edge geometries. CIRP Ann Manuf Technol, 2014, 63(2): 631-653.

[25]

Biermann D (1995) Untersuchungen zum Drehen von Aluminiummatrix-Verbundwerkstoffen. Dissertation, University of Dortmund

[26]

Capello E. Residual stresses in turning Part I: influence of the process parameters. J Mater Process Technol, 2005, 160(2): 221-228.

[27]

Breidenstein B (2011) Oberflächen und Randzonen hoch belasteter Bauteile. Dissertation, University of Hannover, Habilitation

Funding

German research foundation

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/