Numerical study of heat transfer and solidification behavior of gas-atomized Fe-6.5%Si (mass fraction) droplets

Ke-Feng Li , Yun-Hu Zhang , Chang-Jiang Song , Qi-Jie Zhai

Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (2) : 150 -156.

PDF
Advances in Manufacturing ›› 2016, Vol. 4 ›› Issue (2) : 150 -156. DOI: 10.1007/s40436-016-0141-x
Article

Numerical study of heat transfer and solidification behavior of gas-atomized Fe-6.5%Si (mass fraction) droplets

Author information +
History +
PDF

Abstract

During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed, which integrates liquid undercooling, nucleation recalescence and post-recalescence growth to present the full solidification process of Fe-6.5%Si (mass fraction) droplet. The droplet velocity, temperature, cooling rate as well as solid fraction profiles are simulated for droplets with different sizes to demonstrate the critical role of the size effect during the solidification process of droplets. The relationship between the simulated cooling rate and the experimentally obtained secondary dendrite arm spacing is in excellent agreement with the well-established formula. The pre-constant and exponent values lie in the range of various rapid solidified Fe-based alloys reported, which indicates the validity of the numerical model.

Keywords

Fe-6.5%Si (mass fraction) alloy / Gas atomization / Solidification / Heat transfer / Numerical simulation

Cite this article

Download citation ▾
Ke-Feng Li, Yun-Hu Zhang, Chang-Jiang Song, Qi-Jie Zhai. Numerical study of heat transfer and solidification behavior of gas-atomized Fe-6.5%Si (mass fraction) droplets. Advances in Manufacturing, 2016, 4(2): 150-156 DOI:10.1007/s40436-016-0141-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goertz M. Iron-silicon alloys heat treated in a magnetic field. J Appl Phys, 1951, 22(7): 964-965.

[2]

Carr WJ, Smoluchowski R Jr. The magnetostriction of single crystals of iron-silicon alloys. Phys Rev, 1951, 83(6): 1236-1243.

[3]

Takada Y, Abe M, Masuda S, et al. Commercial scale production of Fe-6.5 wt.% Si sheet and its magnetic properties. J Appl Phys, 1988, 64(10): 5367-5369.

[4]

Yamashiro Y, Yoshida Y, Teshima N, et al. Thickness dependence of magnetic properties in rapidly quenched 6.5 percent silicon iron thin ribbons. IEEE Trans Magn, 1982, 18(6): 1421-1423.

[5]

Kim KN, Pan LM, Lin JP, et al. The effect of boron content on the processing for Fe-6.5 wt% Si electrical steel sheets. J Magn Magn Mater, 2004, 277(3): 331-336.

[6]

Li R, Shen Q, Zhang L, et al. Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J Magn Magn Mater, 2004, 281(2–3): 135-139.

[7]

Fang XS, Liang Y, Ye F, et al. Cold rolled Fe-6.5 wt.% Si alloy foils with high magnetic induction. J Appl Phys, 2012, 111(9): 094913-094914.

[8]

Yang L, Tian C, Zhang Y, et al. Spray forming processing of Fe–Si alloy deposit. Powder Metall Technol, 2001, 19(6): 354-357.

[9]

Yang L, Tian C. Microstructure and properties of Fe-4.5 wt% Si steel produced by spray forming and rolling. Mater Sci Technol, 2002, 10(1): 55-58.

[10]

Bolfarini C, Silva MCA, Jorge AM Jr, et al. Magnetic properties of spray-formed Fe-6.5% Si and Fe-6.5% Si-1.0% Al after rolling and heat treatment. J Magn Magn Mater, 2008, 320(20): e653-e656.

[11]

McHugh KM, Delplanque JP, Lavernia EJ, et al. Spray rolling aluminum alloy strip. Mater Sci Eng A, 2004, 383(1): 96-106.

[12]

McHugh KM, Lin Y, Zhou Y, et al. Microstructure evolution during spray rolling and heat treatment of 2124 Al. Mater Sci Eng A, 2008, 477(1–2): 26-34.

[13]

Perepezko JH. Nucleation in undercooled liquids. Mater Sci Eng, 1984, 65(1): 125-135.

[14]

Saad MA. Compressible fluid flow, 1985, Englewood Cliffs: Prentice-Hall

[15]

Lee ES, Ahn S. Solidification progress and heat transfer analysis of gas-atomized alloy droplets during spray forming. Acta Metall Mater, 1994, 42(9): 3231-3243.

[16]

Lu QQ, Fontaine JR, Aubertin G. Numerical study of the solid particle motion in grid-generated turbulent flows. Int J Heat Mass Transf, 1993, 36(1): 79-87.

[17]

Clift R, Grace JR, Weber ME. Bubbles drops and particles, 2005, New York: Dover Publications Incorporated

[18]

Levi CG, Mehrabian R. Heat flow during rapid solidification of undercooled metal droplets. Metall Trans A, 1982, 13(2): 221-234.

[19]

Levi CG, Mehrbian R. Heat flow in atomized metal droplets. Metall Trans B, 1980, 11(1): 21-27.

[20]

Ranz WE, Marshall JR. Evaporation from drops: part 1. Chem Eng Prog, 1952, 48: 141-146.

[21]

Zeoli N, Gu S. Numerical modelling of droplet break-up for gas atomisation. Comput Mater Sci, 2006, 38(2): 282-292.

[22]

Mathur P, Apelian D, Lawley A. Analysis of the spray deposition process. Acta Metall, 1989, 37(2): 429-443.

[23]

Hirth JP. Nucleation, undercooling and homogeneous structures in rapidly solidified powders. Metall Trans A, 1978, 9(3): 401-404.

[24]

Bergmann D, Fritsching U, Bauckhage K. A mathematical model for cooling and rapid solidification of molten metal droplets. Int J Therm Sci, 2000, 39(1): 53-62.

[25]

Brody HD, Flemings MC. Solute redistribution in dendritic solidification. Trans Metall Soc AIME, 1966, 5: 615-623.

[26]

Kurz W, Fisher DJ. Fundamentals of solidification, 1998, Uetikon-Zuerich: Trans Tech Publications

[27]

Pryds NH, Hattel JH, Thorborg J. A quasi-stationary numerical model of atomized metal droplets. II: prediction and assessment. Model Simul Mater Sci Eng, 1999, 7(3): 431-446.

[28]

Löser W, Thiem S, Jurisch M. Solidification modelling of microstructures in near-net-shape casting of steels. Mater Sci Eng A, 1993, 173(1–2): 323-326.

[29]

Sahm PR, Jones H, Adam C. Science and technology of the undercooled melt: rapid solidification materials and technologies, 2012, London: Springer Science & Business Media

[30]

Morris DG. Rapid-solidification phenomena. Met Sci, 1982, 16(10): 457-464.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/