Crystal structure and formation mechanism of the secondary phase in Heusler Ni-Mn-Sn-Co materials

Jin-Ke Yu , Hong-Wei Li , Qi-Jie Zhai , Jian-Xun Fu , Zhi-Ping Luo , Hong-Xing Zheng

Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (4) : 353 -357.

PDF
Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (4) : 353 -357. DOI: 10.1007/s40436-014-0093-y
Article

Crystal structure and formation mechanism of the secondary phase in Heusler Ni-Mn-Sn-Co materials

Author information +
History +
PDF

Abstract

In the present work, crystal structure and formation mechanism of the secondary phase in Heusler Ni-Mn-Sn-Co materials were investigated using X-ray diffraction, scanning/transmission electron microscopy and selected-area electron diffraction techniques. Experimental results showed that the secondary phase presented in both Ni44.1Mn35.1Sn10.8Co10 as-cast bulk alloy and melt-spun ribbon, possessing a face-centered cubic (fcc) Ni17Sn3-type structure. The secondary phase in the as-cast bulk alloy was resulted from a eutectic reaction after the formation of a primary dendritic β phase during cooling. However in the melt-spun rapidly solidified ribbon, the secondary phase was largely suppressed as nano-precipitates distributed along the grain boundaries, which was attributed to a divorced eutectic reaction. The secondary phase exhibited partial amorphous state due to high local cooling rate.

Keywords

Heusler Ni-Mn-Sn-Co materials / Secondary phase / Melt spinning / Divorced eutectic reaction / Microstructure

Cite this article

Download citation ▾
Jin-Ke Yu, Hong-Wei Li, Qi-Jie Zhai, Jian-Xun Fu, Zhi-Ping Luo, Hong-Xing Zheng. Crystal structure and formation mechanism of the secondary phase in Heusler Ni-Mn-Sn-Co materials. Advances in Manufacturing, 2014, 2(4): 353-357 DOI:10.1007/s40436-014-0093-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fähler S, Rößler UK, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E, Albe K. Caloric effects in ferroic materials: new concepts for cooling. Adv Eng Mater, 2012, 14: 10-19.

[2]

Liu J, Woodcock TG, Scheerbaum N, Gutfleisch O. Influence of annealing on magnetic field-induced structural transformation and magnetocaloric effect in Ni-Mn-In-Co ribbons. Acta Mater, 2009, 57: 4911-4920.

[3]

Zheng HX, Wu DZ, Xue SC, Frenzel J, Eggeler G, Zhai QJ. Martensitic transformation in rapidly solidified Heusler Ni49Mn39Sn12 ribbons. Acta Mater, 2011, 59: 5692-5699.

[4]

Zheng HX, Wang W, Xue SC, Zhai QJ, Frenzel J, Luo ZP. Composition-dependent crystal structure and martensitic transformation in Heusler Ni-Mn-Sn alloy. Acta Mater, 2013, 61: 4648-4656.

[5]

Feng WJ, Zhang Q, Zhang LQ, Li B, Du J, Deng YF, Zhang ZD. Large reversible high-temperature magnetocaloric effect in Ni50−xMn38+xSb12 alloys. Solid State Commun, 2010, 150: 949-952.

[6]

Koho K, Söderberg O, Lanska N, Ge Y, Liu X, Straka L, Vimpari J, Heczko O, Lindroos VK. Effect of the chemical composition to martensitic transformation in Ni-Mn-Ga-Fe alloys. Mater Sci Eng, 2004, A378: 384-388.

[7]

Cong DY, Roth S, Schultz L. Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys. Acta Mater, 2012, 60: 5335-5351.

[8]

Feng Y, Sui JH, Gao ZY, Zhang J, Cai W. Investigation on martensitic transformation behavior, microstructures and mechanical properties of Fe-doped Ni-Mn-In alloys. Mater Sci Eng, 2009, A507: 174-178.

[9]

Gao L, Sui JH, Cai W, Gao ZY. Study of the precipitate phases and martensitic transformation in quaternary Heusler alloys of NiMnGaDy. Solid State Commun, 2009, 149: 257-260.

[10]

Chen F, Tong YX, Huang YJ, Tian B, Li L, Zheng YF. Suppression of γ phase in Ni38Co12Mn41Sn9 alloy by melt spinning and its effect on martensitic transformation and magnetic properties. Intermetallics, 2013, 36: 81-85.

[11]

Llamazares JLS, Sanchez T, Santos JD, Pérez MJ, Sanchez ML, Hernando B, Escoda L, Suño JJ, Varga R. Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl Phys Lett, 2008, 92: 012513.

[12]

Xuan HC, Xie KX, Wang DH, Han ZD, Zhang CL, Gu BX, Du YW. Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni44.1Mn44.2Sn11.7 ribbons. Appl Phys Lett, 2008, 92: 242506.

[13]

Hernando B, Llamazares JLS, Santos JD, Escoda L, Suñol JJ, Varga R, Baldomir D, Serantes D. Thermal and magnetic field-induced martensite-austenite transition in Ni50.3Mn35.3Sn14.4 ribbons. Appl Phys Lett, 2008, 92: 042504.

[14]

Ma SC, Cao QQ, Xuan HC, Zhang CL, Shen LJ, Wang DH, Du YW. Magnetic and magnetocaloric properties in melt-spun and annealed Ni42.7Mn40.8Co5.2Sn11.3 ribbons. J Alloys Compd, 2011, 509: 1111-1114.

[15]

Wu DZ, Xue SC, Frenzel J, Eggeler G, Zhai QJ, Zheng HX. Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons. Mater Sci Eng, 2012, A534: 568-572.

[16]

Das R, Saravanan P, Babu DA, Perumal A, Srinivasan A. Influence of solidification rate and heat treatment on magnetic refrigerant properties of melt spun Ni51Mn34In14Si1 ribbons. J Magn Magn Mater, 2013, 344: 152-157.

[17]

Zheng HX, Wang W, Yu JK, Zhai QJ, Luo ZP. Martensitic transformation in melt-spun Heusler Ni-Mn-Sn-Co ribbons. J Mater Res, 2014, 29(7): 880-886.

[18]

Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Manosa L, Planes A. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat Mater, 2005, 4: 450-454.

[19]

Wang W, Yu JK, Zhai QJ, Luo ZP, Zheng HX. Co-doping effect on the martensitic transformation and magnetic properties of Ni49Mn39Sn12 alloy. J Magn Magn Mater, 2013, 346: 103-106.

[20]

Schlagel DL, McCallum RW, Lograsso TA. Influence of solidification microstructure on the magnetic properties of Ni-Mn-Sn alloys. J Alloys Compd, 2008, 463: 38-46.

[21]

Chen XQ, Yang FJ, Lu X, Qin ZX. The way composition affects martensitic transformation temperatures of Ni-Mn-Ga Heusler alloys. Phys Stat Solidi (b), 2007, 244(3): 1047-1053.

AI Summary AI Mindmap
PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/