Review of the first principles calculations and the design of cathode materials for Li-ion batteries

Liu-Ming Yan , Jun-Ming Su , Chao Sun , Bao-Hua Yue

Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (4) : 358 -368.

PDF
Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (4) : 358 -368. DOI: 10.1007/s40436-014-0086-x
Article

Review of the first principles calculations and the design of cathode materials for Li-ion batteries

Author information +
History +
PDF

Abstract

Cathode materials are the most critical challenge for the large scale application of Li-ion batteries in electric vehicles and for the storages of electricity. The first principles calculations play an important role in development and optimization of novel cathode materials. In this paper, we overview the first principles calculations of energy, volume change, band-gap, phase diagram, and Li-ion transport mechanism of cathode materials with an emphasis on the design of such materials. We also overview the recent progress of data mining techniques and the high-throughput first principles calculations for the design and development of cathode materials. Finally, we preview the challenges and opportunities of this rapidly developing field.

Keywords

Materials design / First principles / Density functional theory (DFT) / Li-ion batteries / Diffusion coefficient

Cite this article

Download citation ▾
Liu-Ming Yan, Jun-Ming Su, Chao Sun, Bao-Hua Yue. Review of the first principles calculations and the design of cathode materials for Li-ion batteries. Advances in Manufacturing, 2014, 2(4): 358-368 DOI:10.1007/s40436-014-0086-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194.

[2]

Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater, 2002, 1: 123-128.

[3]

Eagar TW. Bringing new materials to market. Technol Rev, 1995, 98: 42-49.

[4]

Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials. Mater Res Soc Bull, 2010, 35: 693-701.

[5]

Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem, 2008, 29: 2044-2078.

[6]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865-3868.

[7]

Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys, 1999, 110: 6158-6170.

[8]

Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened coulomb potential. J Chem Phys, 2003, 118: 8207-8215.

[9]

Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys, 2006, 125: 224106.

[10]

Meng YS, Arroyo-de Dompablo ME. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci, 2009, 2: 589-609.

[11]

Meng YS, Arroyo-de Dompablo ME. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res, 2013, 46: 1171-1180.

[12]

Hoang K, Johannes M. Tailoring native defects in LiFePO4: insights from first-principles calculations. Chem Mater, 2011, 23: 3003-3013.

[13]

Kuss C, Liang G, Schougaard SB. Atomistic modeling of site exchange defects in lithium iron phosphate and iron phosphate. J Mater Chem, 2012, 22: 24889-24893.

[14]

Xu J, Chen G. Effects of doping on the electronic properties of LiFePO4: a first-principles investigation. Phys B, 2010, 405: 803-807.

[15]

Lin ZP, Zhao YM, Zhao YJ. First-principles studies of Mn-doped LiCoPO4. Chin Phys B, 2011, 20: 018201-018206.

[16]

Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G. Carbonophosphates: a new family of cathode materials for Li-ion batteries identified computationally. Chem Mater, 2012, 24: 2009-2016.

[17]

Chen H, Hautier G, Ceder G. Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc, 2012, 134: 19619-19627.

[18]

Xu GG, Wu J, Chen ZG, Lin YB, Huang ZG. Effect of C doping on the structural and electronic properties of LiFePO4: a first-principles investigation. Chin Phys B, 2012, 21: 097401.

[19]

Jain A, Hautier G, Moore C, Kang B, Lee J, Chen H, Twu N, Ceder G. A computational investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as cathodes for Li ion batteries. J Electrochem Soc, 2012, 159: A622-A633.

[20]

Koyama Y, Arai H, Tanaka I, Uchimoto Y, Ogumi Z. Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem Mater, 2012, 24: 3886-3894.

[21]

Aydinol MK, Kohan AF, Ceder G. Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. J Power Sour, 1997, 68: 664-668.

[22]

Xiao R, Li H, Chen L. Density functional investigation on Li2MnO3. Chem Mater, 2012, 24: 4242-4251.

[23]

Karim A, Fosse S, Persson KA. Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations. Phys Rev B, 2013, 87: 075322.

[24]

Hwang BJ, Tsai YW, Carlier D, Ceder G. A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater, 2003, 15: 3676-3682.

[25]

Ling C, Mizuno F. Capture lithium in α-MnO2: insights from first principles. Chem Mater, 2012, 24: 3943-3951.

[26]

Kim Y, Kim D, Kang S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides. Chem Mater, 2011, 23: 5388-5397.

[27]

Marianetti CA, Morgan D, Ceder G. First-principles investigation of the cooperative Jahn-Teller effect for octahedrally coordinated transition-metal ions. Phys Rev B, 2001, 63: 224304.

[28]

Liivat A. Structural changes on cycling Li2FeSiO4 polymorphs from DFT calculations. Solid State Ion, 2012, 228: 19-24.

[29]

Seo D-H, Kim H, Park I, Hong J, Kang K. Polymorphism and phase transformations of Li2−xFeSiO4 (0 ≤ x ≤ 2) from first principles. Phys Rev B, 2011, 84: 220106.

[30]

Kalantarian MM, Asgari S, Mustarelli P. Theoretical investigation of Li2MnSiO4 as a cathode material for Li-ion batteries: A DFT study. J Mater Chem A, 2013, 1: 2847-2855.

[31]

Seo DH, Park YU, Kim SW, Park I, Shakoor RA, Kang K. First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Phys Rev B, 2011, 83: 205127.

[32]

Manthiram A. Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett, 2011, 2: 176-184.

[33]

Godby RW, Garćıa-Gonźalez P. A primer in density functional theory, 2003, Berlin: Springer 256

[34]

Chan MKY, Ceder G. Efficient band gap prediction for solids. Phys Rev Lett, 2010, 105: 196403.

[35]

Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys Rev B, 2006, 73: 195107.

[36]

Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides. J Phys, 2003, 15: 979

[37]

Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys Rev B, 1991, 44: 943-954.

[38]

Jain A, Hautier G, Ong SP, Moore CJ, Fischer CC, Persson KA, Ceder G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys Rev B, 2011, 84: 045115.

[39]

Zheng X, Cohen AJ, Mori-Sánchez P, Hu X, Yang W. Improving band gap prediction in density functional theory from molecules to solids. Phys Rev Lett, 2011, 107: 026403.

[40]

Ong SP, Wang L, Kang B, Ceder G. LiFePO2 phase diagram from first principles calculations. Chem Mater, 2008, 20: 1798-1807.

[41]

Ong SP, Jain A, Hautier G, Kang B, Ceder G. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem Commun, 2010, 12: 427-430.

[42]

Ong SP, Chevrier VL, Ceder G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B, 2011, 83: 075112.

[43]

Tang K, Yu X, Sun J, Li H, Huang X. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim Acta, 2011, 56: 4869-4875.

[44]

Tang XC, Pan CY, He LP, Li LQ, Chen ZZ. A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments. Electrochim Acta, 2004, 49: 3113-3119.

[45]

Tang XC, Li LX, Lai QL, Song XW, Jiang LH. Investigation on diffusion behavior of Li+ in LiFePO4 by capacity intermittent titration technique (CITT). Electrochim Acta, 2009, 54: 2329-2334.

[46]

Tang XC, Song XW, Shen PZ, Jia DZ. Capacity intermittent titration technique (CITT): a novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4. Electrochim Acta, 2005, 50: 5581-5587.

[47]

Montella C. Comments of the paper ‘capacity intermittent titration technique (CITT). A novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4’ [X.-C. Tang, X.-W. Song, P.-Z. Shen, D.-Z. Jia, Electrochim. Acta 50 (2005) 5581–5587]. Electrochim Acta, 2006, 51: 2778-2781.

[48]

Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta, 2010, 55: 2939-2950.

[49]

Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O. Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering. Electrochim Acta, 2009, 54: 4631-4637.

[50]

Tang SB, Lai MO, Lu L. Li-ion diffusion in highly (0 3 3) oriented LiCoO2 thin film cathode prepared by pulsed laser deposition. J Alloys Compd, 2008, 449: 300-303.

[51]

Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion, 2002, 148: 45-51.

[52]

Chen J, Yan L, Yue B. Nano-layered LiFePO4 particles converted from nano-layered ferrous phenylphosphonate templates. J Power Sour, 2012, 209: 7-14.

[53]

Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G. Calculations of Li-ion diffusion in olivine phosphates. Chem Mater, 2011, 23: 4032-4037.

[54]

Hoang K, Johannes MD. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4. J Power Sour, 2012, 206: 274-281.

[55]

Liu Z, Huang X. Factors that affect activation energy for Li diffusion in LiFePO4: a first-principles investigation. Solid State Ion, 2010, 181: 907-913.

[56]

Liu Z, Huang X. Structural, electronic and Li diffusion properties of LiFeSO4F. Solid State Ion, 2012, 181: 1209-1213.

[57]

Liu Z, Huang X, Wang D. First-principle investigations of N doping in LiFePO4. Solid State Commun, 2008, 147: 505-509.

[58]

Sun C, Yan L, Yue B. Improvement of surface structure and enhancement of conductivity of LiFePO4 surface by graphene and graphene-like B—C—N coating. Acta Phys Chim Sin, 2013, 29: 1666-1672.

[59]

Iddir H, Curtiss LA. Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density functional studies. J Phys Chem C, 2010, 114: 20903-20906.

[60]

Kang K, Morgan D, Ceder G. First principles study of Li diffusion in I-Li2NiO2 structure. Phys Rev B, 2009, 79: 014305.

[61]

Lee S, Park SS. Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater, 2012, 24: 3550-3557.

[62]

Lee S, Park SS. Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: structure, defect chemistry, lithium ion transport pathway, and dynamics. J Phys Chem C, 2012, 116: 25190-25197.

[63]

Adams S. Lithium ion pathways in LiFePO4; and related olivines. J Solid State Electrochem, 2010, 14: 1787-1792.

[64]

Yang J, Tse JS. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. J Phys Chem A, 2011, 115: 13045-13049.

[65]

Ouyang C, Shi S, Wang Z, Huang X, Chen L. First-principles study of Li ion diffusion in LiFePO4. Phys Rev B, 2004, 69: 4303

[66]

Ouyang CY, Shi SQ, Wang ZX, Li H, Huang XJ, Chen LQ. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J Phys, 2004, 16: 2265

[67]

Nishimura SI, Kobayashi G, Ohoyama K, Kanno R, Yashima M, Yamada A. Experimental visualization of lithium diffusion in Li xFePO4. Nat Mater, 2008, 7: 707-711.

[68]

Clark JM, Nishimura SI, Yamada A, Islam MS. High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew Chem, 2012, 51: 13149-13153.

[69]

Velikokhatnyi OI, Choi D, Kumta PN. Effect of boron on the stability of monoclinic NaMnO2: theoretical and experimental studies. Mater Sci Eng B, 2006, 128: 115-124.

[70]

Velikokhatnyi OI, Chang CC, Kumta PN. Ab initio calculations and structural stability of boron-doped sodium manganese oxide. J Electrochem Soc, 2004, 151: J8-J13.

[71]

Kim H, Kim DJ, Seo DH, Yeom MS, Kang K, Kim DK, Jung Y. Ab initio study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem Mater, 2012, 24: 1205-1211.

[72]

Ramzan M, Lebegue S, Ahuja R. Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries. Appl Phys Lett, 2009, 94: 151904.

[73]

Kim H, Park I, Seo DH, Lee S, Kim SW, Kwon WJ, Park YU, Kim CS, Jeon S, Kang K. New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. J Am Chem Soc, 2012, 134: 10369-10372.

[74]

Kim H, Shakoor RA, Park C, Lim SY, Kim JS, Jo YN, Cho W, Miyasaka K, Kahraman R, Jung Y, et al. Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study. Adv Funct Mater, 2013, 23: 1147-1155.

[75]

Park CS, Kim H, Shakoor RA, Yang E, Lim SY, Kahraman R, Jung Y, Choi JW. Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. J Am Chem Soc, 2013, 135: 2787-2792.

[76]

Shakoor RA, Seo DH, Kim H, Park YU, Kim J, Kim SW, Gwon H, Lee S, Kang K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J Mater Chem, 2012, 22: 20535-20541.

[77]

Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G. A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci, 2011, 50: 2295-2310.

[78]

Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S. Data-mining-driven quantum mechanics for the prediction of structure. MRS Bull, 2006, 31: 981-985.

[79]

Hautier G, Fischer CC, Jain A, Mueller T, Ceder G. Finding nature’s missing ternary oxide compounds using machine learning and density functional theory. Chem Mater, 2010, 22: 3762-3767.

[80]

Bennett JW. Discovery and design of functional materials: integration of database searching and first principles calculations. Phys Proc, 2012, 34: 14-23.

[81]

Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Data mined ionic substitutions for the discovery of new compounds. Inorg Chem, 2011, 50: 656-663.

[82]

Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem, 2011, 21: 17147-17153.

[83]

Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem Mater, 2011, 23: 3495-3508.

[84]

Mueller T, Hautier G, Jain A, Ceder G. Evaluation of favorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem Mater, 2011, 23: 3854-3862.

[85]

Ceder G, Aydinol MK, Kohan AF. Application of first-principles calculations to the design of rechargeable Li-batteries. Comput Mater Sci, 1996, 8: 161-169.

[86]

Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 1998, 392: 694-696.

[87]

Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O. The high-throughput highway to computational materials design. Nat Mater, 2013, 12: 191-201.

[88]

Hautier G, Jain A, Ong S. From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci, 2012, 47: 7317-7340.

[89]

Ceder G, Hautier G, Jain A, Ong S. Recharging lithium battery research with first-principles methods. MRS Bull, 2011, 36: 185-191.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/