A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies

Pierre Coddet , Han-lin Liao , Christian Coddet

Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (3) : 212 -221.

PDF
Advances in Manufacturing ›› 2014, Vol. 2 ›› Issue (3) : 212 -221. DOI: 10.1007/s40436-013-0049-7
Article

A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies

Author information +
History +
PDF

Abstract

Manufacturing of solid oxide fuel cell (SOFC) components remains nowadays a key point for the industrial development of this technology. Especially, the deposition of the dense electrolyte layer which is sandwiched between the porous anode and the porous cathode is of paramount importance and thus focuses a lot of attention. Therefore, this paper considers and reviews recent developments concerning solid electrolyte layers manufacturing using thermal spray (TS) and physical vapour deposition (PVD) technologies.

Keywords

Solid oxide fuel cell (SOFC) / Solid electrolytes / Thermal spray (TS) / Physical vapour deposition (PVD)

Cite this article

Download citation ▾
Pierre Coddet, Han-lin Liao, Christian Coddet. A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies. Advances in Manufacturing, 2014, 2(3): 212-221 DOI:10.1007/s40436-013-0049-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

McEvoy AJ. Thin SOFC electrolytes and their interfaces: a near term research strategy. Solid State Ion, 2000, 132: 159-165.

[2]

Badwal SPS, Foger K. Solid oxide electrolyte fuel cell review. Ceram Int, 1996, 22: 257-265.

[3]

Huijsmans JPP, van Berkel FPF, Christie GM. Intermediate temperature SOFC: a promise for the 21st century. J Power Sources, 1998, 71: 107-110.

[4]

Appleby AJ. Fuel cell technology: status and future prospects. Energy, 1996, 21: 521-653.

[5]

Ebrahimi ME (2008) Achievements in solid oxide fuel cell (SOFC) materials and challenges In: Materials Science and Technology, Fuel Cells, Pittsburgh, 2008

[6]

Williams MC, Strakey JP, Singhal SC. U.S. distributed generation fuel cell program. J Power Sources, 2004, 131: 79-85.

[7]

Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ. Fabrication of thin electrolytes for second generation solid oxide fuel cells. Solid State Ion, 2000, 131: 79-96.

[8]

Barringer EA, Heitzenrater DP, Tharp MR (1993) Advanced planar solid oxide fuel cell: design concept and fabrication methodologies. In: Singhal SC, Iwahara H (eds) Proceedings of the third international symposium on solid oxide fuel cells, Pennington. NJ, 1993

[9]

Notomi A, Hisatome N. Application of plasma spraying to solid oxide fuel cell production. Pure Appl Chem, 1996, 68(5): 1101-1106.

[10]

Takenoiri S, Kadokawa N, Koseki K. Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying. J Therm Spray Technol, 2000, 9(3): 360-363.

[11]

Okumura K, Aihara Y, Ito S, Kawasaki S. Development of thermal spraying sintering technology for solid oxide fuel cells. J Therm Spray Technol, 2000, 9(3): 354-359.

[12]

Tsukuda H, Notomi A, Histatome N. Application of plasma spraying to tubular type solid oxide fuel cells production. J Therm Spray Technol, 2000, 9(3): 364-368.

[13]

Scagliotti M, Parmigiani F, Samoggia G, Lanzi G, Richon D. Structural properties of plasma sprayed zirconia based electrolytes. J Mater Sci, 1988, 23: 3764-3770.

[14]

Aihara Y, Ito S, Kawasaki S (1995) Preparation of YSZ films on air electrodes by the thermal spray sintering process In: Proceedings of the 4th international conference on solid oxide fuel cells, Pennington. NJ, 1995

[15]

Zhang C, Li CJ, Zhang G, Ning XJ, Li CX, Liao H, Coddet C. Ionic conductivity and its temperature dependence of atmospheric plasma sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B, 2007, 137: 24-30.

[16]

Zhang C, Li WY, Planche MP, Li CX, Liao HL, Li CJ, Coddet C. Study on gas permeation behaviour through atmospheric plasma-sprayed yttria stabilized zirconia coating. Surf Coat Technol, 2008, 202: 5055-5061.

[17]

Tannenberger H, Grüner H (1994) Fuel cell battery and solid electrolyte fuel cells therefore. US Patent 5,328,779, 12 Jul 1994

[18]

Schiller G, Henne R, Lang M (1997) Development of plasma sprayed components for a new SOFC design. In: Stimming U, Singhal ST, Tagawa H, Lehnert W (eds) Proceedings of the 5th international symposium on solid oxide fuel cells (SOFC-V), ECS Proceedings, vol 97–40. Pennington, p 635

[19]

Ju WT, Hong SH (1998) Development of fabrication processes for tubular solid oxide fuel cell (SOFC) by plasma spraying. In: Proceedings of the 15th international thermal spray conference, France, 25–29 May 1998

[20]

Ma XQ, Zhang H, Dai J, et al. Intermediate temperature solid oxide fuel cell based on fully integrated plasma-sprayed components. J Therm Spray Technol, 2005, 14(1): 61-66.

[21]

Zheng R, Zhou XM, Wang SR, Wen TL, Ding CX. A study of Ni+ 8YSZ/8YSZ/LaSrCoO ITSOFC fabricated by atmospheric plasma spraying. J Power Sources, 2005, 140: 217-225.

[22]

Syed AA, Ilhan Z, Arnold J, et al. Improving plasma-sprayed yttria-stabilized zirconia coatings for solid oxide fuel cell electrolytes. J Therm Spray Technol, 2006, 15(4): 617-622.

[23]

Vassen R, Hathiramani D, Damani RJ, Stver D (2005) Gas-tight zirconia electrolyte layers for SOFCs by atmospheric plasma spraying. In: Proceedings of the international symposium on solid oxide fuel cells, Pennington, Nj, 2005

[24]

Vassen R, Hathiramani D, Mertens J, Haanappel VAC, Vinke IC. Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS). Surf Coat Technol, 2007, 202: 499-508.

[25]

Stöver D, Hathiramani D, Vassen R, Damani RJ. Plasma-sprayed components for SOFC applications. Surf Coat Technol, 2006, 201: 2002-2005.

[26]

Zhang C, Zhang G, Leparoux S, Liao H, Li CX, Li CJ, Coddet C. Microwave sintering of plasma-sprayed yttria stabilized zirconia electrolyte coating. J Eur Ceram Soc, 2008, 28: 2529-2538.

[27]

Li CJ, Ning XJ, Li CX. Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells. Surf Coat Technol, 2005, 190: 60-64.

[28]

Ning XJ, Li CX, Li CJ, Yang GJ. Modification of microstructure and electrical conductivity of plasma sprayed YSZ deposit through post densification process. Mater Sci Eng A, 2006, 428: 98-105.

[29]

Khor KA, Yu LG, Chan SH, Chen XJ. Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J Eur Ceram Soc, 2003, 23: 1855-1863.

[30]

Coddet C, Verdy C, Dembinski L, et al. High properties metallic alloys obtained through the thermal spray route. Mater Sci Forum, 2003, 426–432: 2467-2472.

[31]

Ma XQ, Borit F, Guipont V, et al. Vacuum plasma sprayed YSZ electrolyte for solid oxide fuel cell application. J Adv Mater, 2002, 34(4): 52-57.

[32]

Zhang C, Liao HL, Li WY, et al. Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying. J Therm Spray Technol, 2006, 15(4): 598-603.

[33]

Verdy C, Zhang C, Sokolov D et al (2008) Gas-tight coatings produced by very low pressure plasma spraying. Therm Spray 2008: Crossing Borders (DVS-ASM eds), Maastricht, The Netherlands, 2–4 june 2008

[34]

Lang M, Henne R, Pohl SE et al (2002) Vacuum plasma spraying of thin-film planar solid oxide fuel cells (SOFC)—development and investigation of the YSZ electrolyte layer. In: Lugscheider E (ed) Proceedings of the international thermal spray conference, Verlag, 2002

[35]

Jia L, Dossou-Yovo C, Gahlert C et al (2004) Induction plasma spraying of Samaria doped ceria as electrolyte for solid oxide fuel cells. In: Proceedings of the international thermal spray, Osaka, 10–12 May, 2004

[36]

Hudon F, Ménard H, Jurewicz J (2005) RF plasma deposition of controlled porosity deposits. Application to solid oxide fuel cells. In: Proceedings of the 17th international symposium on plasma chemistry, p 519

[37]

Rampon R, Toma FL, Bertrand G, et al. Liquid plasma sprayed coatings of yttria-stabilized zirconia for SOFC electrolytes. J Therm spray Technol, 2006, 15(4): 682-688.

[38]

Fauchais P, Rat V, Delbos C, et al. Understanding of suspension DC plasma spraying of finely structured coatings for SOFC. IEEE Trans Plasma Sci, 2005, 33(2): 920-930.

[39]

Brousse E, Montavon G, Fauchais P et al (2008) Thin and dense yttria-partially stabilized zirconia electrolytes for IT-SOFC manufactured by suspension plasma spraying. Thermal Spray 2008: Crossing Borders (DVS-ASM eds), Maastricht, The Netherlands, 2–4 june 2008

[40]

Berghaus JO, Legoux JG, Moreau C, et al. Suspension HVOF spraying of reduced temperature solid oxide fuel cell electrolytes. J Therm Spray Technol, 2008, 17(5–6): 700-707.

[41]

Hui R, ObersteBerghaus J, Decès-Petit C, Qu W, Yick S, Legoux JG, Moreau C. High performance metal-supported solid oxide fuel cells fabricated by thermal spray. J Power Sources, 2009, 191: 371-376.

[42]

Xia W, Yang Y, Zhang H, Wang G. Fabrication and electrochemical performance of solid oxide fuel cell components by atmospheric and suspension plasma spray. Trans Nonferr Metals Soc China, 2009, 19: 1539-1544.

[43]

Thornton JA. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol, 1974, 11: 666-670.

[44]

Wang LS, Barnett SA. Lowering the air electrode interfacial resistance in medium temperature solid oxide fuel cells. Solid State Ion, 1993, 61(4): 273-276.

[45]

Wang LS, Barnett SA. Deposition, structure, and properties of cermet thin films composed of Ag and Y-stabilized zirconia. J Electrochem Soc, 1992, 139(4): 1134-1140.

[46]

Nedelec R, Uhlenbruck S, Sebold D, Haanappel VAC, Buchkremer H-P, Stover D. Dense yttria-stabilised zirconia electrolyte layers for SOFC by reactive magnetron sputtering. J Power Sources, 2012, 205: 157-163.

[47]

Wang LS, Barnett SA. Deposition and properties of yttria-stabilized Bi2O3 thin films using reactive direct current magnetron cosputtering. J Electrochem Soc, 1992, 139(9): 2567-2572.

[48]

Kuo Y, Lee C, Liang H, Chen Y (2008) Gadolina-doped ceria thin films deposited by RF reactive magnetron sputtering. In: Materials Science and Technology 327, Pittsburgh, PA, 2008

[49]

Briois P, Lapostolle F, Demange V, et al. Structural investigations of YSZ coatings prepared by DC magnetron sputtering. Surf Coat Technol, 2007, 201(12): 6012-6018.

[50]

Aita CR, Kwok CK. Fundamental optical absorption edge of sputter-deposited zirconia and yttria. J Am Ceram Soc, 2006, 73(11): 3209-3214.

[51]

Briois P, Billard A. A comparison of electrical properties of sputter deposited electrolyte coatings dedicated to intermediate temperature solid oxide fuel cells. Surf Coat Technol, 2006, 201: 1328-1334.

[52]

Gourba E, Briois P, Ringuedé A, Cassir M, Billard A. Electrical properties of gadolinia doped ceria thin films deposited by sputtering in view of SOFC application. J Solid State Electrochem, 2004, 8: 633-637.

[53]

Nakagawa N, Yoshioka H, Kuroda C, Ishida M. Electrode performance of a thin film YSZ cell set on a porous ceramic substrate by et sputtering technique. Solid State Ion, 1989, 35: 249-255.

[54]

Tsai T, Barnett S. Bias sputter deposition of dense yttria stabilized zirconia films on porous substrates. J Electrochem Soc, 1995, 142: 3084.

[55]

Srivastava PK, Quach T, Duan YY, Donelson R, Jiang SP, Ciacchi FT, Badwal SPS. Electrode supported solid oxide fuel cells: electrolyte films prepared by DC magnetron sputtering. Solid State Ion, 1997, 99: 311-319.

[56]

Coddet P, Pera MC, Billard A (2008) Study of the YSZ coatings reactively sputter deposited on Ni/YSZ and NiO/YSZ cermet for SOFC applications. In: Proceedings of the 8th European SOFC forum, Lucerne, Switzerland, 30 june–4 july 2008

[57]

Coddet P, Mauvy F, Péra MC et al (2008) Electrochemical characterization of thin and dense yttria stabilised zirconia electrolyte coatings elaborated by physical vapour deposition. In: Proceedings of the fundamentals and development of fuel cell conference, CNRS Nancy Pub., Nancy, France, 10–12 December, pp 1–8

[58]

Coddet P, Pera MC, Billard A. Reactive co-sputter deposition of YSZ coatings using plasma emission monitoring. Surf Coat Technol, 2011, 205: 3987-3991.

[59]

Coddet P, Pera MC, Billard A. Planar solid oxide fuel cell: Electrolyte deposited by reactive magnetron sputtering and cell test. Fuel Cells, 2011, 11(2): 158-164.

[60]

Han F, Leonide A, Gestel TV, Buchkremer HP (2010) Excellent electrochemical performance with thin YSZ electrolyte for IT-SOFCs In: Proceedings of the 9th European SOFC forum, Lucerne

[61]

Uhlenbruck S, Nédélec R, Sebold D, et al. Electrode and electrolyte layers for solid oxide fuel cells applied by physical vapor deposition (PVD). ECS Trans, 2011, 35(1): 2275-2282.

[62]

Gestel TV, Han F, Menzler N, Buchkremer HP (2011) Novel SOFCs with 1 micrometer thick 8YSZ electrolyte layers In: Singhal S (ed) 219th ECS Meeting, The Electrochemical Society, Montreal, 1–6 May 2011

[63]

Beckel D, Bieberle-Hütter A, Harvey A, Infortuna A, Muecke U, Prestat M, Rupp J, Gauckler L. Thin films for micro solid oxide fuel cells. J Power Sources, 2007, 173: 325-345.

AI Summary AI Mindmap
PDF

244

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/