Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel

A. G. Kamble , R. Venkata Rao

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (4) : 362 -377.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (4) : 362 -377. DOI: 10.1007/s40436-013-0041-2
Article

Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel

Author information +
History +
PDF

Abstract

Gas metal arc welding (GMAW) develops an arc by controlling the metal from the wire rod and the input process parameters. The deposited metal forms a weld bead and the mechanical properties depend upon the quality of the weld bead. Proper control of the process parameters which affect the bead geometry, the microstructures of the weldments and the mechanical properties like hardness, is necessary. This experimental study aims at developing mathematical models for bead height (H B), bead width (W B) and bead penetration (P B) and investigating the effects of four process parameters viz: welding voltage, welding speed, wire feed rate and gas flow rate on bead geometry, hardness and microstructure of AISI321 steel with 10 mm thickness. The transient thermal analysis shows temperature and residual stress distributions at different conduction and convection conditions.

Keywords

Gas metal arc welding (GMAW) / Mathematical modeling / Microstructure / Transient thermal analysis

Cite this article

Download citation ▾
A. G. Kamble, R. Venkata Rao. Experimental investigation on the effects of process parameters of GMAW and transient thermal analysis of AISI321 steel. Advances in Manufacturing, 2013, 1(4): 362-377 DOI:10.1007/s40436-013-0041-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Quintino L, Allum CJ. Pulsed GMAW: interactions between process parameters-part 1. Weld Mater Fabr, 1981, 85: 5-9.

[2]

Smati Z. Automated pulsed MIG welding. Metal Constr, 1985, 18: 38-44.

[3]

Ganjigatti JP, Pratihar DK, Choudhary AR. Modeling of the MIG welding process using statistical approaches. Int J Adv Manuf Technol, 2006, 30: 669-676.

[4]

Tham G, Yaakub MY, Abas SK, et al. Predicting the GMAW 3F T-Fillet geometry and its welding parameter. Int Symp Robotics Intel Sens Procedia Eng, 2012, 41: 1794-1799.

[5]

Xu W, Wu C, Zou D. Predicting of bead undercut defects in high speed gas metal arc welding. Frontier Mater Sci, 2008, 2: 402-408.

[6]

Katherasan D, Elias JV, Sathiya P, et al. Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. J Intell Manuf, 2012, 12: 675-684.

[7]

Rao PS, Gupta OP, Murty SSN, et al. Effects of process parameters and mathematical model for the prediction of bead geometry in pulsed GMA welding. Int J Adv Manuf Technol, 2009, 45: 496-505.

[8]

Campbell SW, Galloway AM, McPherson NA. Artificial neural network prediction of weld geometry performed using GMAW with alternating shielding gases. Weld J, 2012, 91: 174s-181s.

[9]

Ganjigatti JP, Pratihar DK, Choudhury AR. Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process. J Mater Process Technol, 2007, 189: 352-366.

[10]

Shiang SJ, Fong TY, Bin YJ. Principal component analysis for multiple quality characteristics optimization of metal inert gas welding aluminum foam plate. Mater Des, 2011, 32: 1253-1261.

[11]

Pal S, Pal SK, Samantaray AK. Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. J Mater Process Technol, 2008, 202: 464-474.

[12]

Malviya R, Pratihar DK. Tuning of neural networks using particle swarm optimization to model MIG welding process. Swarm Evolut Comput, 2011, 1: 223-235.

[13]

Benyounis KY, Olabi AG. Optimization of different welding process using statistical and numerical approaches: a reference guide. Adv Eng Softw, 2008, 39: 483-496.

[14]

Palani PK, Murugan N. Optimization of weld bead geometry for stainless steel claddings deposited by FCAW. J Mater Process Technol, 2007, 190: 291-299.

[15]

Murugan N, Parmar RS. Effects of MIG process parameters on the geometry of the bead in the automatic surfacing of stainless steel. J Mater Process Technol, 1994, 41: 381-398.

[16]

Cochran WG, Cox GM. Experimental designs, 1957, New York: Wiley.

[17]

Sudhakaran R, Murugan V, Sethilkumar KM, et al. Effects of welding process parameters on weld bead geometry and optimization of process parameters to maximize depth to width ratio for stainless steel gas tungsten arc welded plates using genetic algorithm. J Sci Res, 2011, 62: 76-94.

[18]

Systat SYSTAT version 12, 1991, San Jose: Systat Inc

[19]

Hamza RMA, Aloraier A, Al-Faraj EA. Investigation of the effect of welding polarity on joint bead geometry and mechanical properties of shielded metal arc welding process. J Eng Technol, 2011, 2: 100-111.

[20]

Kolhe KP, Datta CK. Prediction of microstructure and mechanical properties of multipass SAW. J Mater Process Technol, 2008, 197: 241-249.

[21]

Capriccioli A, Frosi P. Multipurpose ANSYS FE procedure for welding processes simulation. Fus Eng Des, 2009, 84: 546-553.

[22]

Kong F, Ma J, Kovacevic R. Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process. J Mater Process Technol, 2011, 211: 1102-1111.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/