Determination of accurate theoretical values for thermodynamic properties in bulk metallic glasses

Pei-You Li , Gang Wang , Ding Ding , Jun Shen

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (4) : 293 -304.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (4) : 293 -304. DOI: 10.1007/s40436-013-0040-3
Article

Determination of accurate theoretical values for thermodynamic properties in bulk metallic glasses

Author information +
History +
PDF

Abstract

Deviation values of specific heat difference $ \Updelta C_{\rm p},$ the Gibbs free energy difference $ \Updelta G , $ enthalpy difference $ \Updelta H , $ and entropy difference $ \Updelta S $ between the supercooled liquid and corresponding crystalline phase produced by the linear, hyperbolic, and Dubey’s expressions of $ \Updelta C_{\rm p}$ and the corresponding experimental values are determined for sixteen bulk metallic glasses (BMGs) from the glass transition temperature $ T_{\text{g}} $ to the melting temperature $ T_{\text{m}}. $ The calculated values produced by the hyperbolic expression for $\Updelta C_{\rm p}$ most closely approximate experimental values, indicating that the hyperbolic $\Updelta C_{\rm p}$ expression can be considered universally applicable, compared to linear and Dubey’s expressions for $ \Updelta C_{\rm p},$ which are accurate only within a limited range of conditions. For instance, Dubey’s $\Updelta C_{\rm p}$ expression provides a good approximation of actual experimental values within certain conditions (i.e., $ \xi = \Updelta C_{\rm p}^{\rm g}/\Updelta C_{\rm p}^{\rm m}< 2 , $ where $\Updelta C_{\rm p}^{\rm g}$ and $\Updelta C_{\rm p}^{\rm m}$ represent the specific heat difference at temperatures $ T_{\text{g}} $ and $ T_{\text{m}} , $ respectively).

Keywords

Bulk metallic glass (BMG) / Specific heat / Linear expression / Hyperbolic expression

Cite this article

Download citation ▾
Pei-You Li, Gang Wang, Ding Ding, Jun Shen. Determination of accurate theoretical values for thermodynamic properties in bulk metallic glasses. Advances in Manufacturing, 2013, 1(4): 293-304 DOI:10.1007/s40436-013-0040-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zallen R. The physics of amorphous solids, 1973, New York: Wiley

[2]

Machlin E. An introduction to aspects of thermodynamics kinetics relevant to materials science, 2007, Amsterdam: Elsevier, Science or Technology Books

[3]

Stillinger FH. Supercooled liquids, glass transitions and the Kauzmann paradox. J Chem Phys, 1988, 88: 7818-7825.

[4]

Turnbull D. Formation of crystal nuclei in liquid metals. J Appl Phys, 1950, 21: 1022-1028.

[5]

Paul A. Chemistry of glasses, 1982, London: Chapman and Hall.

[6]

Singh HB, Holz A. Stability limit of supercooled liquids. Solid State Commun, 1983, 45: 985-988.

[7]

Dubey KS. Thermodynamic and viscous behaviour of glass forming melts and glass forming ability. AIP Conf Proc, 2010, 1249: 211-232.

[8]

Singh PK, Dubey KS. Thermodynamic behaviour of bulk metallic glasses. Thermochim Acta, 2012, 530: 120-127.

[9]

Jones D, Chadwick G. An expression for the free energy of fusion in the homogeneous nucleation of solid from pure melts. Philos Mag, 1971, 24: 995-998.

[10]

Mondal K, Chatterjee UK, Murty BS. Gibb’s free energy for the crystallization of glass forming liquids. Appl Phys Lett, 2003, 83: 671-673.

[11]

Patel TA, Pratap A. Study of thermodynamic properties of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. AIP Conf Proc, 2010, 1249: 161-165.

[12]

Thompson CV, Spaepen F. On the approximation of the free energy change on crystallization. Acta Metall, 1979, 27: 1855-1859.

[13]

Hoffman JD. Thermodynamic driving force in nucleation and growth processes. J Chem Phys, 1958, 29: 1192-1193.

[14]

Ji X, Pan Y. Gibbs free energy difference in metallic glass forming liquids. J Non-Cryst Solids, 2007, 353: 2443-2446.

[15]

Li PY, Wang G, Ding D, et al. Characterizing thermodynamic properties of Ti-Cu-Ni-Zr bulk metallic glasses by hyperbolic expression. J Alloys Compd, 2013, 550: 221-225.

[16]

Jiang QK, Zhang GQ, Yang L, et al. La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Mater, 2007, 55: 4409-4418.

[17]

Lu ZP, Hu X, Li Y. Thermodynamics of La based La-Al-Cu-Ni-Co alloys studied by temperature modulated DSC. Intermetallics, 2000, 8: 477-480.

[18]

Glade SC, Busch R, Lee DS, et al. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J Appl Phys, 2000, 87: 7242-7248.

[19]

Jiang QK, Wang XD, Nie XP, et al. Zr-(Cu, Ag)-Al bulk metallic glasses. Acta Mater, 2008, 56: 1785-1796.

[20]

Busch R, Liu W, Johnson WL. Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J Appl Phys, 1998, 83: 4134-4141.

[21]

Legg BA, Schroers J, Busch R. Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. Acta Mater, 2007, 55: 1109-1116.

[22]

Li PY, Wang G, Ding D, et al. Glass forming ability and thermodynamics in the new Ti-Cu-Ni-Zr bulk metallic glasses. J Non-Crystal Solids, 2012, 358: 3200-3204.

[23]

Busch R, Kim YJ, Johnson WL. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. J Appl Phys, 1995, 77: 4039-4043.

[24]

Cai AH, Chen H, Li X, et al. An expression for the calculation of Gibbs free energy difference of multi-component bulk metallic glasses. J Alloys Compd, 2007, 430: 232-236.

[25]

Gallino I, Shah MB, Busch R. Enthalpy relaxation and its relation to the thermodynamics and crystallization of the Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass-forming alloy. Acta Mater, 2007, 55: 1367-1376.

[26]

Fan GJ, Loffler JF, Wunderlich RK, et al. Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20. Acta Mater, 2004, 52: 667-674.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/