Local synthesis of carbon nanotubes for direct integration in Si microsystems – design considerations

Knut E. Aasmundtveit , Bao Quoc Ta , Quoc-Huy Nguyen , Tormod B. Haugen , Nils Hoivik , Einar Halvorsen

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 218 -225.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 218 -225. DOI: 10.1007/s40436-013-0037-y
Article

Local synthesis of carbon nanotubes for direct integration in Si microsystems – design considerations

Author information +
History +
PDF

Abstract

The integration of nanomaterials such as carbon nanotubes (CNTs) into microsystems is highly desirable, in order to make use of the unique nanomaterial properties in real devices. However, the CNT-to-microsystem integration is challenging to implement in a manufacturable, cost-effective industrial process. This paper presents our work towards a process for making complete, integrated CMOS / MEMS systems with integrated CNT. We demonstrate the feasibility of the process, using room-temperature processing, low-cost equipment and consumables, and electrical control with automation possibilities. CNTs are directly integrated at the desired positions in the Si microsystem, forming closed Si / CNT / Si circuits. We explore different designs with the aim to obtain uniform and well-defined CNT synthesis conditions, and show that simplified designs can perform comparably to more complex ones. The Si / CNT / Si circuits obtained can show rectifying (Schottky-like) or near-ohmic behavior. Gas sensing possibilities are demonstrated, indicating the possibility of monitoring aging/ fermenting of food. Functionalization of CNTs is demonstrated, using thermal evaporation of Sn and Pd, opening for selective and sensitive sensors for various gases and analytes. Detailed microscopic characterization of the obtained CNTs are presented.

Keywords

Micro/ nano system integration / Carbon nanotubes (CNTs) / Nanoscale assembly / Gas sensors

Cite this article

Download citation ▾
Knut E. Aasmundtveit, Bao Quoc Ta, Quoc-Huy Nguyen, Tormod B. Haugen, Nils Hoivik, Einar Halvorsen. Local synthesis of carbon nanotubes for direct integration in Si microsystems – design considerations. Advances in Manufacturing, 2013, 1(3): 218-225 DOI:10.1007/s40436-013-0037-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kawano T, Chiamori HC, Suter M, Zhou Q, Sosnowchik BD, Lin L. An electrothermal carbon nanotube gas sensor. Nano Lett, 2007, 7: 3686-3690.

[2]

Jacobs CB, Peairs MJ, Venton BJ. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta, 2010, 662: 105-127.

[3]

Avouris P, Freitag M, Perebeinos V. Carbon-nanotube photonics and optoelectronics. Nat Photonics, 2008, 2: 341-350.

[4]

Zhang T, Mubeen S, Myung NV, Deshusses MA. Recent progress in carbon nanotube-based gas sensors. Nanotechnology, 2008, 19(33): 332001.

[5]

Morris JE, Iniewski K. Nanoelectronic device applications handbook, 2013, Boca Raton, FL, USA: CRC Press

[6]

Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73: 2447-2449.

[7]

Aasmundtveit KE, Ta BQ, Lin LW, Halvorsen E, Hoivik N. Direct integration of carbon nanotubes in Si microstructures. J Micromech Microeng, 2012, 22(7): 074006.

[8]

Aasmundtveit KE, Ta BQ, Hoivik N, Halvorsen E. Morris JE, Iniewski K. Electrical control on synthesis conditions for locally grown CNTs on polysilicon microstructures. Nanoelectronic Device Applications Handbook, 2013, Boca Raton, FL, USA: CRC Press

[9]

Qingqing G, Albert E, Fabel B, Abdellah A, Lugli P, Chan-Park MB, Scarpa G (2011) Solution-processable random carbon nanotube networks for thin-film transistors. In: 11th IEEE conference on nanotechnology, IEEE-NANO, pp 378–381

[10]

Cullinan MA, Culpepper ML (2011) Design and fabrication of single chirality carbon nanotube-based sensors. In: 11th IEEE conference on nanotechnology, IEEE-NANO, pp 26–29

[11]

Englander O, Christensen D, Lin L. Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl Phys Lett, 2003, 82: 4797-4799.

[12]

Christensen D, Englander O, Jongbaeg K, Lin L (2003) Room temperature local synthesis of carbon nanotubes. In: Third IEEE conference on IEEE-NANO, pp 581–584

[13]

Dittmer S, Nerushev OA, Campbell EEB. Low ambient temperature CVD growth of carbon nanotubes. Appl Phys A Mater Sci Process, 2006, 84: 243-246.

[14]

Ta BQ, Hoivik N, Halvorsen E, Aasmundtveit KE (2011) Electrical control of synthesis conditions for locally grown CNTs on polysilicon microstructure. In: 11th IEEE conference on nanotechnology, IEEE-NANO, pp 374–377

[15]

Miller DC, Boyce BL, Dugger MT, Buchheit TE, Gall K. Characteristics of a commercially available silicon-on-insulator MEMS material. Sens Actuators A Phys, 2007, 138: 130-144.

[16]

Nguyen QH (2012) Catalyst Preparation for local synthesis of carbon nanotubes. Dissertation, Vestfold University College

[17]

Ta BQ, Halvorsen E, Hoivik N, Aasmundtveit KE (2013) Diameter dependency for the electric-field-assisted growth of CNTs. Appl Phys Lett (accepted)

[18]

Ta BQ, Haugen TB, Hoivik N, Halvorsen E, Aasmundtveit KE. Local synthesis of CNTs in Si microsystems: the effect of temperature distribution on growth structure. Materials, 2013, 6: 3160-3170.

[19]

Haugen TB, Ta BQ, Halvorsen E, Hoivik N, Aasmundtveit KE. Integration of CNTs in microsystems: local growth and electrical properties of contacts. Materials, 2013, 6: 3094-3107.

[20]

Nguyen QH, Ta BQ, Hoivik N, Halvorsen E, Aasmundtveit KE (2013) CNT-based gas sensor for expiration detection of perishable food. In: 13th IEEE conference on nanotechnology, IEEE-Nano, Beijing, China, pp 675–678

[21]

Ta BQ, Ngo AV, Nguyen QH, Hoivik N, Halvorsen E, Aasmundtveit KE (2013) Deposition of Pd on suspended and locally grown CNTs using thermal evaporation. In: 13th IEEE conference on nanotechnology, IEEE-Nano, pp 1176–1179

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/