Effect of substrates and underlayer on CNT synthesis by plasma enhanced CVD

Liang Xu, Di Jiang, Yi-Feng Fu, Stephane Xavier, Shailendra Bansropun, Afshin Ziaei, Shan-Tung Tu, Johan Liu

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 236-240.

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 236-240. DOI: 10.1007/s40436-013-0036-z
Article

Effect of substrates and underlayer on CNT synthesis by plasma enhanced CVD

Author information +
History +

Abstract

Due to their unique thermal, electronic and mechanical properties, carbon nanotubes (CNTs) have aroused various attentions of many researchers. Among all the techniques to fabricate CNTs, plasma enhanced chemical vapor deposition (PECVD) has been extensively developed as one growth technique to produce vertically-aligned carbon nanotubes (VACNTs). Though CNTs show a trend to be integrated into nanoelectromechanical system (NEMS), CNT growth still remains a mysterious technology. This paper attempts to reveal the effects of substrates and underlayers to CNT synthesis. We tried five different substrates by substituting intrinsic Si with high resistivity ones and by increasing the thickness of SiO2 insulativity layer. And also, we demonstrated an innovative way of adjusting CNT density by changing the thickness of Cu underlayer.

Keywords

Carbon nanotube (CNT) / Substrate / Underlayer / Effect

Cite this article

Download citation ▾
Liang Xu, Di Jiang, Yi-Feng Fu, Stephane Xavier, Shailendra Bansropun, Afshin Ziaei, Shan-Tung Tu, Johan Liu. Effect of substrates and underlayer on CNT synthesis by plasma enhanced CVD. Advances in Manufacturing, 2013, 1(3): 236‒240 https://doi.org/10.1007/s40436-013-0036-z

References

[1.]
Che J, Çagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology, 2000, 11(2): 65-69.
CrossRef Google scholar
[2.]
Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nat Mater, 2003, 2(11): 731-734.
CrossRef Google scholar
[3.]
Allaoui A, Bai S, Cheng H, Bai J. Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol, 2002, 62(15): 1993-1998.
CrossRef Google scholar
[4.]
Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forró L, Benoit W, Zuppiroli L. Mechanical properties of carbon nanotubes. Appl Phys A, 1999, 69(3): 255-260.
[5.]
McEuen PL, Fuhrer MS, Park H. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 2002, 1(1): 78-85.
CrossRef Google scholar
[6.]
Lau AKT, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites. Compos Part B: Eng, 2002, 33(4): 263-277.
[7.]
Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol, 2001, 61(13): 1899-1912.
[8.]
Bohr MT. Nanotechnology goals and challenges for electronic applications. IEEE Trans Nanotechnol, 2002, 1(1): 56-62.
CrossRef Google scholar
[9.]
Jang JE, Cha SN, Choi YJ, Kang DJ, Butler TP, Hasko DG, Jung JE, Kim JM, Amaratunga GAJ. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat Nanotechnol, 2008, 3(1): 26-30.
CrossRef Google scholar
[10.]
Huczko A. Template-based synthesis of nanomaterials. Appl Phys A, 2000, 70(4): 365-376.
CrossRef Google scholar
[11.]
Jiang D, Wang T, Chen S, Ye L, Liu J. Paper-mediated controlled densification and low temperature transfer of carbon nanotube forests for electronic interconnect application. Microelectron Eng, 2013, 103: 177-180.
CrossRef Google scholar
[12.]
Fu Y, Nabiollahi N, Wang T, Wang S, Hu Z, Carlberg B, Zhang Y, Wang X, Liu J. A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity. Nanotechnology, 2012, 23(4): 045304.
CrossRef Google scholar
[13.]
Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF. Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A, 2002, 74(3): 387-391.
CrossRef Google scholar
[14.]
Kim SM, Gangloff L. Thermal chemical vapor deposition (T-CVD) growth of carbon nanotubes on different metallic underlayers. Phys E: Low-Dimens Syst Nanostruct, 2011, 43(8): 1481-1485.
CrossRef Google scholar
[15.]
Hu JL, Yang CC, Huang JH. Vertically-aligned carbon nanotubes prepared by water-assisted chemical vapor deposition. Diam Relat Mater, 2008, 17(12): 2084-2088.
CrossRef Google scholar
[16.]
Ziaei A, Charles M, Le Baillif M, Xavier S, Caillard A. Capacitive and ohmic RF NEMS switches based on vertical carbon nanotubes. Int J Microw Wirel Technol, 2010, 2(5): 433-440.
[17.]
Feng Z, Lueck MR, Temple DS, Steer MB. High-performance solenoidal RF transformers on high-resistivity silicon substrates for 3D integrated circuits. IEEE Trans Microw Theory Tech, 2012, 60(7): 2066-2072.
CrossRef Google scholar
[18.]
Zhang F, Shi L, Li C. Cpw transmission insertion loss on Si and Soi substrates. Microw J, 2005, 48(11): 138-142.
[19.]
Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, Legagneux P, Pirio G, Gangloff L, Pribat D, Semet V, Binh VT, Bruenger WH, Eichholz J, Hanssen H, Friedrich D, Lee SB, Hasko DG, Ahmed H. Fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in a parallel electron-beam lithography system. J Vac Sci Technol B: Microelectron Nanometer Struct, 2003, 21(2): 693-697.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/