Phase precipitation and isothermal crystallization kinetics of FeZrB amorphous alloy

Bing-Ge Zhao , Ling-Hong Kong , Ting-Ting Song , Qi-Jie Zhai , Yu-Lai Gao

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 251 -257.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 251 -257. DOI: 10.1007/s40436-013-0033-2
Article

Phase precipitation and isothermal crystallization kinetics of FeZrB amorphous alloy

Author information +
History +
PDF

Abstract

The crystallization process of Fe78Zr7B15 (at%) amorphous ribbon was investigated by X-ray diffraction (XRD), differential scanning calorimetry and scanning electron microscopy (SEM). The fully amorphous structure of as-quenched (Aq) ribbons was confirmed by XRD pattern. The saturation magnetization (M s) and Curie temperature of the Aq ribbon were measured as 124.3 (A·m2)/kg and 305 °C with vibrating sample magnetometer (VSM), respectively. When the ribbons was annealed at 550 °C near the first onset temperature (T x1 = 564.9 °C), the M s was increased by 17 %, which was caused by the formation of a dual phase structure. The isothermal crystallization kinetics and crystallization mechanism of primary α-Fe phase in the dual phase structure were studied by Arrhenius and Johnson-Mehl-Avrami-Kolmogorov equations respectively. The results showed that the crystallization of α-Fe phase was a diffusion-controlled surface nucleation growth process, and the nucleation rate decreased with longer crystallization time.

Keywords

Crystallization / Dual phase structure / Activation energy / Avrami exponent

Cite this article

Download citation ▾
Bing-Ge Zhao, Ling-Hong Kong, Ting-Ting Song, Qi-Jie Zhai, Yu-Lai Gao. Phase precipitation and isothermal crystallization kinetics of FeZrB amorphous alloy. Advances in Manufacturing, 2013, 1(3): 251-257 DOI:10.1007/s40436-013-0033-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hao L, Diao XG, Gu BX, Zhang LY, Wang TM. Study on preparing and crystallization kinetics of melt-spun Co-based soft magnetic amorphous alloy Nanoperm. Rare Metal Mater Eng, 2008, 37: 1628-1632.

[2]

Makino A, Hatanai T, Naitoh Y, Bitoh T, Inoue A, Masumoto T. Applications of nanocrystalline soft magnetic Fe-M-B (M = Zr, Nb) alloys. IEEE Trans Magn, 1997, 33: 3793-3798.

[3]

Yuan WJ, Liu FJ, Pang SJ, Song YJ, Zhang T. Core loss characteristics of Fe-based amorphous alloys. Intermetallics, 2009, 17: 278-280.

[4]

Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J Appl Phys, 1988, 64: 6044.

[5]

Soliman AA, Al-Heniti S, Al-Hajry A, Al-Assiri M, Al-Barakati G. Crystallization kinetics of melt-spun Fe83B17 metallic glass. Thermochim Acta, 2004, 413: 57-62.

[6]

Lu W, Yan B, Tang R. Bulk metglas, finemet and Nanoperm soft magnetic alloys prepared by ultra-high-pressure consolidation. J Alloy Compd, 2006, 425: 406-410.

[7]

Nagase T, Umakoshi Y, Sumida N. Formation of nanocrystalline structure during electron irradiation induced crystallization in amorphous Fe-Zr-B alloys. Sci Technol Adv Mater, 2002, 3: 119-128.

[8]

Herzer G. Soft magnetic nanocrystalline materials. Scr Metall Mater, 1995, 33: 1741-1756.

[9]

Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn, 1989, 25(5): 3327-3329.

[10]

Suzuki K, Cadogan JM. Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Phys Rev B, 1998, 58: 2730-2739.

[11]

Suzuki K, Herzer G, Cadogan JM. The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys. J Magn Magn Mater, 1998, 177–181: 949-950.

[12]

Gorria P, Barquın LF, Prida VM, Howells WS. Microstructural study of joule heated nanocrystalline alloys using in situ neutron diffraction. J Magn Magn Mater, 2003, 254–255: 504-506.

[13]

Makino A, Hatanai T, Inoue A, Masumoto T (1997) Nanocrystalline soft magnetic Fe-M-B (M = Zr, Hf, Nb) alloys and their applications. Mater Sci Eng A 226–228: 594–602

[14]

Makino A, Bingo M, Bitoh T, Yubuta K, Inoue A (2007) Improvement of soft magnetic properties by simultaneous addition of P and Cu for nanocrystalline FeNbB alloys. J Appl Phys 101:09N117. doi:10.1063/1.2714676

[15]

Suzuki K, Cadogan JM, Aoki K, Ringer SP. Soft magnetic properties of Ge-doped nanocrystalline Fe-Zr-B alloys. J Magn Magn Mater, 2003, 254–255: 441-443.

[16]

Karolus M, Kwapuliński P, Chrobak D, Haneczok G, Chrobak A. Crystallization in Fe76X2B22 (X = Cr, Zr, Nb) amorphous alloys. J Mater Process Technol, 2005, 162–163: 203-208.

[17]

Ipus JJ, Blázquez JS, Franco V, Conde A. Influence of Co addition on the magnetic properties and magnetocaloric effect of Nanoperm (Fe1-XCoX)75Nb10B15 type alloys prepared by mechanical alloying. J Alloy Compd, 2010, 496: 7-12.

[18]

Tang J, Mao X, Li S, Gao W, Du Y. Effects of two-step annealing on the microstructures and soft magnetic properties of nanocrystalline Fe86Zr7B6Cu1 ribbons. J Alloy Compd, 2004, 375: 233-238.

[19]

Ito N, Michels A, Kohlbrecher J, Garitaonandia JS, Suzuki K, Cashion JD. Effect of magnetic field annealing on the soft magnetic properties of nanocrystalline materials. J Magn Magn Mater, 2007, 316: 458-461.

[20]

Modak SS, Ghodke N, Mazaleyrat F, Bue ML, Varga LK, Gupta A, Kane SN. Structural and magnetic investigation of gradually devitrified Nanoperm alloys. J Magn Magn Mater, 2008, 320: e828-e832.

[21]

Minić DM, Adnađević B. Mechanism and kinetics of crystallization of α-Fe in amorphous Fe81B13Si4C2 alloy. Thermochim Acta, 2008, 474: 41-46.

[22]

Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermochim Acta, 2003, 408: 39-43.

[23]

Shivaee HA, Hosseini HRM. Advanced isoconversional kinetics of nanocrystallization in Fe73.5Si13.5B9Nb3Cu1 alloy. Thermochim Acta, 2009, 494: 80-85.

[24]

Kong LH, Gao YL, Song TT, Wang G, Zhai QJ. Non-isothermal crystallization kinetics of FeZrB amorphous alloy. Thermochim Acta, 2011, 522: 166-172.

[25]

Rizza G, Dunlop A, Jaskierowicz G, Kopcewicz M. Local crystallization induced in Fe-based amorphous alloys by swift heavy projectiles. Nucl Instrum Methods Phys Res B, 2004, 226: 609-621.

[26]

Cziráki Á, Udvardy O, Lovas A, Tichy G. Some structural aspects of magnetic property evolution in finemet-type sensor material during amorphous-nanocrystalline transformations. Period Polytech Transp Eng, 2004, 47: 167-176.

[27]

Blazquez J, Conde C, Conde A. Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater, 2005, 53: 2305-2311.

[28]

Gao Y-L, Shen J, Sun J-F, Wang G, Xing D-W, Xian H-Z, Zhou B-D. Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region. Mater Lett, 2003, 57: 1894-1898.

[29]

Málek J. Kinetic analysis of crystallization processes in amorphous materials. Thermochim Acta, 2000, 355: 239-253.

[30]

Chrissafis K, Maragakis MI, Efthimiadis KG, Polychroniadis EK. Detailed study of the crystallization behaviour of the metallic glass Fe75Si9B16. J Alloy Compd, 2005, 386: 165-173.

[31]

Illekovh E, Malizia F, Ronconi F. The complex DSC analysis of the first crystallization peak of Fe80Si10B10 metallic glass. Thermochim Acta, 1996, 282(283): 91-100.

[32]

McHenry ME, Johnson F, Okumura H, Ohkubo T, Ramanan VRV, Laughlin DE. The kinetics of nanocrystallization and microstructural observations in FINEMET, NANOPERM and HITPERM nanocomposite magnetic materials. Scripta Mater, 2003, 48: 881-887.

[33]

Ramanan VRV. Crystallization kinetics in Fe-B-Si metallic glasses. J Appl Phys, 1982, 53: 2273.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/