Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches

Sergio Manzetti

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 198 -210.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (3) : 198 -210. DOI: 10.1007/s40436-013-0030-5
Article

Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches

Author information +
History +
PDF

Abstract

Encapsulation of different guest-species such as molecules and ions inside carbon nanotubes (CNTs) has been reported in the literatures during the last 15 years and represents an exciting development of nanoengineering of novel materials and composites. The reported nanocomposite materials show the semi-conducting properties with potential applications in nanosensors, nanounits and nanocircuits as well as advanced energy transfer and storage properties, and encompass manufacturing for novel nanowires, nanoelectronic devices with properties designed with optoelectronic, spintronic and nanomagnetic qualities. This review reports on a wide range of encapsulation references with particular focus on single molecules, atomic chains, metal halides and polymers encapsulated inside CNTs. The encapsulation methods and the chemical and physical qualities of these novel materials are crucial for the future manufacturing of novel innovations in nanotechnology, and represent therefore the current state-of-the-art of encapsulation methods in advanced manufacturing.

Keywords

Encapsulation / Carbon nanotubes (CNTs) / Composites conductive / Molecules

Cite this article

Download citation ▾
Sergio Manzetti. Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Advances in Manufacturing, 2013, 1(3): 198-210 DOI:10.1007/s40436-013-0030-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guan L, Shi Z, Li M, et al. Ferrocene-filled single-walled carbon nanotubes. Carbon, 2005, 43: 2780-2785.

[2]

Obergfell D, Meyer JC, Haluska M, et al. Transport and TEM on dysprosium metallofullerene peapods. Phys Status Solidif B, 2006, 243: 3430-3434.

[3]

Del Carmen Gimenez-Lopez M, Chuvilin A, Kaiser U et al (2011) Functionalised endohedral fullerenes in single-walled carbon nanotubes. Chem Commun (Camb) 47:2116–2118

[4]

Del Carmen Gimenez-Lopez M, La Torre A, Fay MW et al (2013) Assembly and magnetic bistability of Mn3O4 nanoparticles encapsulated in hollow carbon nanofibers. Angew Chem Int Ed Engl 52:2051–2054

[5]

Faist J, Capasso F, Sirtori C, et al. Continuous wave operation of a vertical transition quantum cascade laser above T = 80 K. Appl Phys Lett, 1995, 67: 3057-3059.

[6]

Tóth G, Lent CS. Quantum computing with quantum-dot cellular automata. Phys Rev A, 2001, 63: 052315.

[7]

Lindner NH, Refael G, Galitski V. Floquet topological insulator in semiconductor quantum wells. Nat Phys, 2011, 7: 490-495.

[8]

Meunier V, Sumpter BG. Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: electronic properties and quantum conductance. J Chem Phys, 2005, 123: 24705.

[9]

Dinadayalane TC, Gorb L, Simeon T, et al. Cumulative-interaction triggers unusually high stabilization of linear hydrocarbon inside the single-walled carbon nanotube. Int J Quantum Chem, 2007, 107: 2204-2210.

[10]

Smith BW, Monthoux M, Luzzi DE. Encapsulated C60 in carbon nanotubes. Nature, 1998, 396: 323-324.

[11]

Maniwa Y, Kumazawa Y, Saito Y, et al. Anomaly of X-ray diffraction profile in single-walled carbon nanotubes. Jpn J Appl Phys Lett, 1999, 38: L668-L670.

[12]

Takenobu T, Takano T, Shiraishi M, et al. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat Mater, 2003, 2: 683-688.

[13]

Morgan DA, Sloan J, Green ML. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem Commun, 2002, 20: 2442-2443.

[14]

Smith BW, Luzzi DE. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem Phys Lett, 2000, 321: 169-174.

[15]

Kiang CH, Choi JS, Tran TT, et al. Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J Phys Chem B, 1999, 103: 7449-7451.

[16]

Sloan J, Hammer J, Zwiefka-Sibley M, et al. The opening and filling of single walled carbon nanotubes (SWTs). Chem Commun, 1998, 3: 347-348.

[17]

Sloan J, Dunin-Borkowski RE, Hutchison JL, et al. The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem Phys Lett, 2000, 316: 191-198.

[18]

Zhang Y, Iijima S, Shi Z, et al. Defects in arc-discharge-produced single-walled carbon nanotubes. Philos Mag Lett, 1999, 79: 473-479.

[19]

Wang ZX, Ke XZ, Zhu ZY, et al. Carbon-atom chain formation in the core of nanotubes. Phys Rev B, 2000, 61: R2472-R2474.

[20]

Warner J, Rümmeli MH, Bachmatiuk A, et al. Structural transformations of carbon chains inside nanotubes. Phys Rev B, 2010, 81: 155419.

[21]

Nishide D, Dohi H, Wakabayashi T, et al. Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside. Chem Phys Lett, 2006, 428: 356-360.

[22]

Zhao X, Ando Y, Liu Y, et al. Carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett, 2003, 90: 187401-187404.

[23]

Sheng L, Jin A, Yu L, et al. A simple and universal method for fabricating linear carbon chains in multiwalled carbon nanotubes. Mater Lett, 2012, 81: 222-224.

[24]

Koshino M, Tanaka T, Solin N, et al. Imaging of single organic molecules in motion. Science, 2007, 316: 853.

[25]

Chamberlain TW, Biskupek J, Rance GA, et al. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes. ACS Nano, 2012, 6: 3943-3953.

[26]

Chuvilin A, Bichoutskaia E, Gimenez-Lopez MC, et al. Self-assembly of a sulfur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat Mater, 2011, 10: 687-692.

[27]

Tang J, Huo Z, Brittman S, et al. Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat Nanotechnol, 2011, 6: 568-572.

[28]

Meyer RR, Sloan J, Dunin-Borkowski RE, et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 2000, 289: 1324-1327.

[29]

Lee J, Kim H, Kahng SJ, et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature, 2002, 415: 1005-1008.

[30]

Sloan J, Kirkland AI, Hutchison JL et al (2002) Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem Commun: 1319–1332. doi:10.1039/B200537A

[31]

Bendall JS, Ilie A, Welland ME, et al. Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J Phys Chem B, 2006, 110: 6569-6573.

[32]

Zhou J, Song H, Chen X, et al. Diffusion of metal in a confined nanospace of carbon nanotubes induced by air oxidation. J Am Chem Soc, 2010, 132: 11402-11405.

[33]

La Torre A, Del Carmen Gimenez-Lopez M, Fay MW et al (2012) Assembly, growth, and catalytic activity of gold nanoparticles in hollow carbon nanofibers. ACS Nano 6:2000–2007

[34]

Sloan JM, Wright D, Bailey S et al (1999) Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun: 699–700. doi:10.1039/A901572H

[35]

Rothschild A, Sloan J, Tenne R. Growth of WS2 nanotubes phases. J Am Chem Soc, 2000, 122: 5169-5179.

[36]

Xu C, Sloan J, Brown G, et al. 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem Commun, 2000, 24: 2427-2428.

[37]

Del Carmen Gimenez-Lopez M, Moro F, La Torre A et al (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2:407

[38]

Guan L, Suenaga K, Shi Z, et al. Polymorphic structures of iodine and their phase transition in confined nanospace. Nano Lett, 2007, 7: 1532-1535.

[39]

Philip E, Sloan J, Kirkland AI, et al. An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat Mater, 2003, 2: 788-791.

[40]

Ugarte D, Chatelain A, de Heer WA. Nanocapillarity and chemistry in carbon. Science, 1996, 274: 1897-1899.

[41]

Gubin SP, Koksharov YA. Preparation, structure, and properties of magnetic materials based on co-containing nanoparticles. Inorg Mater, 2002, 38: 1085-1099.

[42]

Liu Z, Dai X, Xu J, et al. Encapsulation of polystyrene within carbon nanotubes with the aid of supercritical CO2. Carbon, 2004, 42: 458-460.

[43]

Steinmetz J, Kwon S, Lee HJ, et al. Polymerization of conducting polymers inside carbon nanotubes. Chem Phys Lett, 2006, 431: 139-144.

[44]

Bazilevsky AV, Sun K, Yarin AL, et al. Selective intercalation of polymers in carbon nanotubes. Langmuir, 2007, 23: 7451-7455.

[45]

Britz DA, Khlobystov AN, Porfyrakis K, et al. Chemical reactions inside single-walled carbon nano test-tubes. Chem Commun, 2005, 107: 37-39.

[46]

Ito T, Shirakawa H, Ikeda S. Thermal cis–trans isomerization and decomposition of polyacetylene. J Polym Sci, 1975, 12: 1943-1950.

[47]

Chiang CK, Fincher CB, Park YW, et al. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1977, 39: 1098-1101.

[48]

Chiang CK, Druy MA, Gau SC, et al. Synthesis of highly conducting films of derivatives of polyacetylene, (CH) x. J Am Chem Soc, 1978, 100: 1013-1015.

[49]

Shirakawa H, Louis EJ, MacDiarmid AG et al (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J Am Chem Soc: 578

[50]

Ravve A. Principles of polymer chemistry, 2012, New York: Springer.

[51]

McCormick CL, Kirkland SE, York AW. Synthetic routes to stimuli–responsive micelles, vesicles, and surfaces via controlled/living radical polymerization. J Macromol Sci C, 2006, 46: 421-443.

[52]

Oh JK, Drumright R, Siegwart DJ, et al. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci, 2008, 33: 448-477.

[53]

Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem, 2009, 1: 276-288.

[54]

Khlobystov AN. Carbon nanotubes: from nano test tube to nano-reactor. ACS Nano, 2011, 5: 9306-9312.

[55]

Chamberlain TW, Gimenez-Lopez MdC, Khlobystov AN (2010) Carbon nanotubes as containers. In: Carbon nanotubes and related structures. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 349–384

[56]

Shi XQ, Dai ZX, Zhong GH, et al. Spin-polarized transport in carbon nanowires inside semiconducting carbon nanotubes. J Phys Chem C, 2007, 111: 10130-10134.

[57]

Tran-Duc T, Thamwattana N. Modeling encapsulation of acetylene molecules into carbon nanotubes. J Phys, 2011, 23: 225302

[58]

Lee SU, Belosludov RV, Mizuseki H, et al. Electron transport characteristics of organic molecule encapsulated carbon nanotubes. Nanoscale, 2011, 3: 1773-1779.

[59]

Ilie A, Bendall JS, Nagaoka K, et al. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano, 2011, 5: 2559-2569.

[60]

Kuwahara R, Kudo Y, Morisato T, et al. Encapsulation of carbon chain molecules in single-walled carbon nanotubes. J Phys Chem A, 2011, 115: 5147-5156.

[61]

McIntosh GC, Tomanek D, Park YW. Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube. Phys Rev B, 2003, 67: 125419.

[62]

Kim G, Kim Y, Ihm J. Encapsulation and polymerization of acetylene molecules inside a carbon nanotube. Chem Phys Lett, 2005, 415: 279.

[63]

Becke A. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1998, 38: 3098-3100.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/