Nanodots of multiferroic oxide material BiFeO3 from the first principles

Wei Ren

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (2) : 166 -175.

PDF
Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (2) : 166 -175. DOI: 10.1007/s40436-013-0026-1
Article

Nanodots of multiferroic oxide material BiFeO3 from the first principles

Author information +
History +
PDF

Abstract

Multiferroic nanodots can be harnessed to aid the development of the next generation of nonvolatile data storage and multi-functional devices. In this paper, we review the computational aspects of multiferroic nanodot materials and designs that hold promise for the future memory technology. Conception, methodology, and systematical studies are discussed, followed by some up-to-date experimental progress towards the ultimate limits. At the end of this paper, we outline some challenges remaining in multiferroic research, and how the first principles based approach can be employed as an important tool providing critical information to understand the emergent phenomena in multiferroics.

Keywords

Multiferroic / Nanodot / Vortex / Memory

Cite this article

Download citation ▾
Wei Ren. Nanodots of multiferroic oxide material BiFeO3 from the first principles. Advances in Manufacturing, 2013, 1(2): 166-175 DOI:10.1007/s40436-013-0026-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Spaldin NA, Cheong SW, Ramesh R. Multiferroics: past, present, and future. Phys Today, 2010, 63: 38-43.

[2]

Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003, 299: 1719-1722.

[3]

Ederer C, Spaldin NA. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B, 2005, 71: 060401.

[4]

Béa H, Gajek M, Bibes M, et al. Spintronics with multiferroics. J Phys Condens Matter, 2008, 20: 434221.

[5]

Seidel J, Martin LW, He Q, et al. Conduction at domain walls in oxide multiferroics. Nat Mater, 2009, 8: 229-234.

[6]

Ren W, Yang Y, Diéguez O, et al. Ferroelectric domains in multiferroic BiFeO3 films under epitaxial strains. Phys Rev Lett, 2013, 110: 187601

[7]

Choi T, Lee S, Choi YJ, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324: 63-66.

[8]

Albrecht D, Lisenkov S, Ren W, et al. Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys Rev B, 2010, 81: 140401.

[9]

Chen Z, Prosandeev S, Luo ZL, et al. Coexistence of ferroelectric triclinic phases in highly strained BiFeO3 films. Phys Rev B, 2011, 84: 094116.

[10]

Chen Z, Zou X, Ren W, et al. Study of strain effect on in-plane polarization in epitaxial BiFeO3 thin films using planar electrodes. Phys Rev B, 2012, 86: 235125.

[11]

Yang Y, Stengel M, Ren W, et al. Epitaxial short-period PbTiO3/BiFeO3 superlattices studied by first-principles calculations. Phys Rev B, 2012, 86: 144114.

[12]

Chen W, Ren W, You L, et al. Domain structure and in-plane switching in a highly strained Bi0.9Sm0.1FeO3 film. Appl Phys Lett, 2011, 99: 222904.

[13]

Daumont C, Ren W, Infante IC, et al. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. J Phys Condens Matter, 2012, 24: 162202.

[14]

Yang Y, Ren W, Stengel M, et al. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles. Phys Rev Lett, 2012, 109: 057602.

[15]

Rault JE, Ren W, Prosandeev S, et al. Thickness-dependent polarization of strained BiFeO3 films with constant tetragonality. Phys Rev Lett, 2012, 109: 267601.

[16]

Prosandeev S, Wang D, Ren W, et al. Novel nanoscale twinned phases in perovskite oxides. Adv Funct Mater, 2013, 23: 234-240.

[17]

Barrett N, Rault JE, Wang JL, et al. Full field electron spectromicroscopy applied to ferroelectric materials. J Appl Phys, 2013, 113: 187217

[18]

Sando D, Agbelele A, Daumont C et al (2013) Control of ferroelectricity and magnetism in multiferroic BiFeO3 by epitaxial strain. Phil Trans R Soc A (invited review)

[19]

Zhong W, Vanderbilt D, Rabe KM. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys Rev B, 1995, 52: 6301-6312.

[20]

Kornev IA, Bellaiche L, Janolin PE, et al. Phase diagram of Pb(Zr, Ti)O3 solid solutions from first principles. Phys Rev Lett, 2006, 97: 157601.

[21]

Ponomareva I, Naumov II, Kornev I, et al. Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys Rev B, 2005, 72: 140102.

[22]

Infante IC, Juraszek J, Fusil S, et al. Multiferroic phase transition near room temperature in BiFeO3 films. Phys Rev Lett, 2011, 107: 237601.

[23]

Kiat JM, Bogicevic C, Karolak F, et al. Low-symmetry phases and loss of relaxation in nanosized lead scandium niobate. Phys Rev B, 2010, 81: 144122.

[24]

Wang D, Weerasinghe J, Bellaiche L. Atomistic molecular dynamic simulations of multiferroics. Phys Rev Lett, 2012, 109: 067203.

[25]

Chen WJ, Zheng Y, Wang B, et al. Vortex domain structures of an epitaxial ferroelectric nanodot and its temperature-misfit strain phase diagram. Phys Chem Chem Phys, 2013, 15(19): 7277-7285.

[26]

Chen WJ, Zheng Y, Wang B. Vortex domain structure in ferroelectric nanoplatelets and control of its transformation by mechanical load. Sci Rep, 2012, 2: 796

[27]

Chen LQ. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc, 2008, 91: 1835-1844.

[28]

Slutsker J, Artemev A, Roytburd A. Phase-field modeling of domain structure of confined nanoferroelectrics. Phys Rev Lett, 2008, 100: 087602.

[29]

Wu CM, Chen WJ, Ma DC, et al. Effects of the surface charge screening and temperature on the vortex domain patterns of ferroelectric nanodots. J Appl Phys, 2012, 112: 104108.

[30]

Ren W, Bellaiche L. Size effects in multiferroic BiFeO3 nanodots: a first-principles-based study. Phys Rev B, 2010, 82: 113403.

[31]

Ren W, Bellaiche L, Lisenkov S (2010) Tackling complex phenomena in nanoscale multiferroics. In: High performance computing modernization program users group conference (HPCMP-UGC), Schaumburg, IL, pp 259–262

[32]

Kornev IA, Lisenkov S, Haumont R, et al. Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett, 2007, 99: 227602.

[33]

Arnold DC, Knight KS, Morrison FD, et al. Ferroelectric-paraelectric transition in BiFeO3: crystal structure of the orthorhombic β phase. Phys Rev Lett, 2009, 102: 027602.

[34]

Haumont R, Kornev IA, Lisenkov S, et al. Phase stability and structural temperature dependence in powdered multiferroic BiFeO3. Phys Rev B, 2008, 78: 134108.

[35]

Selbach SM, Tybell T, Einarsrud MA, et al. Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem Mater, 2007, 19: 6478-6484.

[36]

Spanier JE, Kolpak AM, Urban JJ, et al. Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett, 2006, 6: 735-739.

[37]

Naumov II, Bellaiche L, Fu H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature, 2004, 432: 737-740.

[38]

Miltat J, Thiaville A. Vortex cores–smaller than small. Science, 2002, 298: 555.

[39]

Balke N, Winchester B, Ren W, et al. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. Nat Phys, 2012, 8: 81-88.

[40]

Rodriguez BJ, Gao XS, Liu LF, et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett, 2009, 9: 1127-1131.

[41]

Sichuga D, Ren W, Prosandeev S, et al. Chiral patterns of tilting of oxygen octahedra in zero-dimensional ferroelectrics and multiferroics: a first principle-based study. Phys Rev Lett, 2010, 104: 207603.

[42]

Ren W, Bellaiche L. Prediction of the magnetotoroidic effect from atomistic simulations. Phys Rev Lett, 2011, 107: 127202.

[43]

Van Waeyenberge B, Puzic A, Stoll H, et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature, 2006, 444: 461-464.

[44]

Roy PE, Lee JH, Trypiniotis T, et al. Antivortex domain walls observed in permalloy rings via magnetic force microscopy. Phys Rev B, 2009, 79: 060407.

[45]

Li J, Rau C. Three-dimensional, spin-resolved structure of magnetic vortex and antivortex states in patterned Co films using scanning Ion microscopy with polarization analysis. Phys Rev Lett, 2006, 97: 107201.

[46]

Mermin ND. The topological theory of defects in ordered media. Rev Mod Phys, 1979, 51: 591-648.

[47]

Hans S. Some symmetry aspects of ferroics and single phase multiferroics. J Phys Condens Matter, 2008, 20: 434201.

[48]

Jung I, Son JY. Dip-pen lithography of BiFeO3 nanodots. J Am Ceram Soc, 2012, 95: 3716-3718.

[49]

Baek SH, Jang HW, Folkman CM, et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater, 2010, 9: 309-314.

[50]

Sun T, Pan Z, Dravid VP. Nanopatterning of multiferroic BiFeO3 using “soft’’ electron beam lithography. Appl Phys Lett, 2006, 89: 163117/1-163117/3.

[51]

Polking MJ, Han MG, Yourdkhani A, et al. Ferroelectric order in individual nanometre-scale crystals. Nat Mater, 2012, 11: 700-709.

[52]

Lee JH, Jeong YK, Park JH, et al. Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys Rev Lett, 2011, 107: 117201.

[53]

Yuan S, Ren W, Hong F, et al. Spin switching and magnetization reversal in single-crystal NdFeO3. Phys Rev B, 2013, 87: 184405

[54]

Zhao HJ, Ren W, Yang Y et al (2013) Effect of chemical and hydrostatic pressures on structural and magnetic properties of rare-earth orthoferrites: a first-principles study (submitted)

[55]

Yang Y, Ren W, Wang D, et al. Understanding and revisiting properties of EuTiO3 bulk material and films from first principles. Phys Rev Lett, 2012, 109: 267602.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/