Thermal plasma synthesis of SiC

Muralidharan Ramachandran, Ramana G. Reddy

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (1) : 50-61.

Advances in Manufacturing ›› 2013, Vol. 1 ›› Issue (1) : 50-61. DOI: 10.1007/s40436-013-0011-8
Article

Thermal plasma synthesis of SiC

Author information +
History +

Abstract

Synthesis of silicon carbide has been carried out using thermal plasma processing technique using SiO2 as the solid feed and CH4 as the gaseous reducing agent. Thermochemical calculations have been performed varying the molar ratio of silicon dioxide and methane to determine the feasibility of the reaction. Experiments using a molar ratio of SiO2:CH4 equal to 1:2 produced maximum yield of SiC of about 65 mol % at a solid feed rate of 5 g/min. Mostly spherical morphology with some nanorods has been observed. The presence of Si had been observed and was quantified using XRD, HRTEM, Raman spectroscopy and X-ray photoelectron microscopy (XPS). Si acts as a nucleating agent for SiC nanorods to grow.

Keywords

Silicon carbide / Thermal plasma / High resolution transmission electron microscopy (HRTEM) / Raman spectroscopy / X-ray photoelectron microscopy (XPS)

Cite this article

Download citation ▾
Muralidharan Ramachandran, Ramana G. Reddy. Thermal plasma synthesis of SiC. Advances in Manufacturing, 2013, 1(1): 50‒61 https://doi.org/10.1007/s40436-013-0011-8

References

[1.]
Apelian D (1992) Materials synthesis: A new horizon for plasma processing. In: International symposium on thermal plasma Applications in materials and metallurgical processing, San Diego, USA, 1–5 Mar 1992
[2.]
Kassabji F, Jacq G, Durand JP (1998) Thermal spray application for the next millennium: a business development perspective. In: Proceedings of the 15th international thermal spray conference, Nice, France, 25–29 May 1998
[3.]
Taylor PR, Pirzada SA. Thermal plasma processing of materials: a review. Adv Perform Mater, 1994, 1: 35-56.
CrossRef Google scholar
[4.]
Boulos MI. Thermal plasma processing. IEEE Trans Plasma Sci, 1991, 19(6): 1078-1089.
CrossRef Google scholar
[5.]
Pfender E. Thermal plasma technology: where do we stand and where are we going?. Plasma Chem Plasma Process, 1999, 19(1): 1-31.
CrossRef Google scholar
[6.]
Oh SM, Park DW. Preparation of AIN fine powder by thermal plasma processing. Thin Solid Films, 1998, 316: 189-194.
CrossRef Google scholar
[7.]
Fukumasa O, Sakiyama S. Thermal plasma processing-synthesis of diamond and β-alumina. Surf Coat Technol, 2000, 131: 493-499.
CrossRef Google scholar
[8.]
White SW, Reddy RG. Mishra B. Waste processing of MgO bag house dust using plasma arc technology. EPD Congress 1999, 1999, Nashville: TMS 687-697.
[9.]
Reddy RG, Antony LVM. The thermal plasma processing of fine powders. J Manag, 2003, 55(3): 19-22.
[10.]
Reddy RG, Antony LVM (2003) Processing of SiC nano powders using thermal plasma technique. In: Proceedings of the international conference on nanotechnology: scientific challenges and commercial opportunities, Rhode Island, 17–18 Sep 2003
[11.]
Mohai I, Szépvölgyi J, Bertóti I, et al. Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics, 2001, 141(142): 163-168.
CrossRef Google scholar
[12.]
Tong L, Reddy RG. Synthesis of titanium carbide nanopowders by thermal plasma. Scripta Mater, 2005, 52: 1253-1258.
CrossRef Google scholar
[13.]
Niyomwas S, Wu B, Reddy RG, et al. Suryanarayana C, Thadhani NN, et al. Synthesis and modeling of Fe–TiN composites by thermal plasma processing. Ultrafine grained materials, 2000, Nashville: TMS 89-98.
[14.]
Antony LVM (2004) Thermal plasma processing of Al-SiC ultrafine composites. Dissertation, The University of Alabama
[15.]
Tong L, Reddy RG. In situ synthesis of TiC-Al(Ti) nanocomposite powders by thermal plasma technology. Metall Mater Trans B, 2006, 37B: 531-539.
CrossRef Google scholar
[16.]
US Patent 6,379,419 B1, 30 April 2002
[17.]
Acheson AG. British Patent, 1892, 17: 911
[18.]
Knippenberg WF. Growth phenomena in silicon carbide: preparative procedures. Philips Res Rep, 1966, 18: 170-179.
[19.]
Lely JA. Darstellung von einkristallen von siliziumcarbid und beherrschung von art und menge der eingbauten verunreinigungen. Ber Deutche Keramik Geselshaft, 1955, 32: 229-231.
[20.]
Hamilton DR. Connor JR, Smilestens J. The growth of silicon carbide by sublimation. Silicon carbide: a high temperature semiconductor, 1960, Oxford: Pergamon 45-51.
[21.]
Novikov VP, Ionov VI. Production of monocrystals of alpha-silicon carbide. Growth Cryst, 1968, 6: 9-21.
[22.]
Tairov YM, Tsvetkov VF. Investigation of growth processes of ingots of silicon carbide single crystals. J Cryst Growth, 1978, 43: 209-212.
CrossRef Google scholar
[23.]
Ziegler G, Lanig P, Theis D, et al. Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Trans Electron Devices, 1983, 30(4): 277-281.
CrossRef Google scholar
[24.]
Glass RC, Henshall D, Tsvetkov VF, et al. SiC-seeded crystal. MRS Bull, 1997, 22(3): 30-35.
[25.]
Tairov YM. Growth of bulk SiC. Mater Sci Eng B, 1995, 29: 83-89.
CrossRef Google scholar
[26.]
Karpov SY, Makarov YN, Mokhov EN, et al. Analysis of silicon carbide growth by sublimation sandwich method. J Cryst Growth, 1997, 173: 408-416.
CrossRef Google scholar
[27.]
Matsunami H, Kimoto T. Step controlled epitaxial growth of SiC: high quality homoepitaxy. Mater Sci Eng B, 1997, 20: 125-166.
CrossRef Google scholar
[28.]
Epelbaum BM, Hofmann D, Muller M, et al. Top-seeded solution growth of bulk SiC: search for the fast growth regimes. Mater Sci Forum, 2000, 338(342): 107-110.
CrossRef Google scholar
[29.]
Roine A (2002) HSC Chemistry Ver. 5.1, Copyright© Outokumpu Research Oy, Pori, Finland
[30.]
Gokcen NA, Reddy RG. Thermodynamics, 1966, 2 New York: Plenum Publications 203-243.
[31.]
Cullity BD. Elements of X-ray diffraction, 1978, 2 Reading: Addison-Wesley
[32.]
Powder Diffraction File-4 (PDF-4) (2011) International Centre for Diffraction Data (ICDD), Joint Committee on Powder Diffraction Standards (JCPDS)
[33.]
Ryu Y, Tak Y, Yong K. Direct growth of core-shell SiC–SiO2 nanowires and field emission characteristics. Nanotechnology, 2005, 16: S370-S374.
CrossRef Google scholar
[34.]
Galuska AA, Uht JC, Marquez N. Reactive and nonreactive ion mixing of Ti films on carbon substrates. J Vac Sci Technol A, 1988, 6(1): 110-122.
CrossRef Google scholar
[35.]
Zhang SL, Zhub BF, Huanga F, et al. Effect of defects on optional phonon Raman spectra in SiC nanorods. Solid State Commun, 1999, 111(11): 647-651.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/