Effects of electroacupuncture on gut microbiota in a rat model of urticaria

Xianjun Xiao , Peiwen Xue , Haiyan Qin , Di Qin , Lu Wang , Rongjiang Jin , Ying Li , Yunzhou Shi , Juan Li

Acupuncture and Herbal Medicine ›› 2025, Vol. 5 ›› Issue (1) : 103 -114.

PDF (1770KB)
Acupuncture and Herbal Medicine ›› 2025, Vol. 5 ›› Issue (1) : 103 -114. DOI: 10.1097/HM9.0000000000000145
Original Articles

Effects of electroacupuncture on gut microbiota in a rat model of urticaria

Author information +
History +
PDF (1770KB)

Abstract

Objective: Growing evidence suggests a strong link between gut microbiota and the pathogenesis of urticaria, positioning the gut-skin axis as a novel therapeutic target. Despite the efficacy of acupuncture in alleviating urticaria symptoms, the underlying mechanisms remain poorly understood. We investigated the effects of electroacupuncture on gut microbiota in a rat model of urticaria.
Methods: Sprague-Dawley rats were randomly divided into three groups: control, model, and electroacupuncture. An urticaria model was established by combining active systemic and passive cutaneous allergic reactions. Electroacupuncture treatment was administered for 7 days, during which the number of scratches, the diameter of skin sensitization blue spots, and degranulation rate of mast cells were recorded. Inflammation in the sensitized skin was assessed using hematoxylin and eosin staining, and the composition of the gut microbiota was analyzed using 16S rRNA gene sequencing.
Results: Electroacupuncture significantly reduced the frequency of scratching, the diameter of sensitized blue spots, and the degranulation rate of mast cells in rats. The staining results revealed that electroacupuncture decreased inflammatory cell infiltration and fibrous tissue proliferation in the sensitized skin. The 16S rRNA gene sequencing demonstrated that electroacupuncture adjusted the ratio of Firmicutes to Bacteroidetes. Receiver operating characteristic (ROC) curve analysis identified Parabacteroides johnsonii as a potential biomarker for diagnosing urticaria (AUC = 0.8516, where AUC stands for the area under the curve) and Lactobacillus reuteri and Limosilactobacillus as potential biomarkers for predicting the effectiveness of acupuncture treatment (AUC = 0.8281).
Conclusion: Electroacupuncture may alleviate urticaria symptoms by modulating the gut microbiota, providing new theoretical and practical directions for acupuncture treatment of urticaria.

Keywords

Electroacupuncture / Firmicutes/bacteroidetes ratio / Gut microbiota / Gut-skin axis / Urticaria

Cite this article

Download citation ▾
Xianjun Xiao, Peiwen Xue, Haiyan Qin, Di Qin, Lu Wang, Rongjiang Jin, Ying Li, Yunzhou Shi, Juan Li. Effects of electroacupuncture on gut microbiota in a rat model of urticaria. Acupuncture and Herbal Medicine, 2025, 5(1): 103-114 DOI:10.1097/HM9.0000000000000145

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Funding

This study was supported by grants from the National Natural Science Foundation of China (82205283), the Natural Science Foundation of Sichuan Provincial Department of Science and Technology (24NSFSC1549), the China Postdoctoral Science Foundation (2022MD723719), and Chengdu University of Traditional Chinese Medicine’s 2024 Undergraduate Innovation and Entrepreneurship Training Program Project (202410633015).

Author contributions

Xianjun Xiao, Rongjiang Jin, and Ying Li conceived and designed the experiments; Xianjun Xiao, Peiwen Xue, Haiyan Qin, Di Qin, and Lu Wang conducted the experiments; Xianjun Xiao, Yunzhou Shi, and Juan Li analyzed the data and wrote the manuscript. All authors reviewed the manuscript and agreed to the final version for submission.

Ethical approval of studies and informed consent

The animal experiment has been approved by the Animal Ethics Committee of Chengdu University of Traditional Chinese Medicine (Animal use license number: SCXK2020-0030, Animal Ethics Number: 2023-01).

Acknowledgments

None.

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request. Additional information and supporting data can be found in the Supplementary Materials section of this article.

References

[1]

Kolkhir P, Gimenez-Arnau AM, Kulthanan K, et al. Urticaria. Nat Rev Dis Primers. 2022; 8(1):61. doi:10.1038/s41572-022-00389-z.

[2]

Goncalo M, Gimenez-Arnau A, Al-Ahmad M, et al. The global burden of chronic urticaria for the patient and society. Br J Dermatol. 2021; 184(2):226-236. doi:10.1111/bjd.19561.

[3]

Zuberbier T, Abdul Latiff AH, Abuzakouk M, et al. The international EAACI/GA(2)LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy. 2022; 77(3):734-766. doi:10.1111/all.15090.

[4]

Tawil S, Irani C, Kfoury R, et al. Association of chronic urticaria with psychological distress: a multicentre cross-sectional study. Acta Derm Venereol. 2023; 103:adv00865. doi:10.2340/actadv.v102.2939.

[5]

Zhang X, Zhang J, Chu Z, et al. Gut microbiome alterations and functional prediction in chronic spontaneous urticaria patients. J Microbiol Biotechnol. 2021; 31(5):747-755. doi:10.4014/jmb.2012.12022.

[6]

Kristo M, Lugovic-Mihic L, Munoz M, et al. Gut microbiome composition in patients with chronic urticaria: a review of current evidence and data. Life (Basel). 2023; 13(1):152. doi:10.3390/life13010152.

[7]

Wang D, Guo S, He H, et al. Gut microbiome and serum metabolome analyses identify unsaturated fatty acids and butanoate metabolism induced by gut microbiota in patients with chronic spontaneous urticaria. Front Cell Infect Microbiol. 2020; 10:24. doi:10.3389/fcimb.2020.00024.

[8]

Wang X, Yi W, He L, et al. Abnormalities in gut microbiota and metabolism in patients with chronic spontaneous urticaria. Front Immunol. 2021; 12:691304. doi:10.3389/fimmu.2021.691304.

[9]

Al Bander Z, Nitert MD, Mousa A, et al. The gut microbiota and inflammation: an overview. Int J Environ Res Public Health. 2020; 17(20):7618. doi:10.3390/ijerph17207618.

[10]

Zhu L, Jian X, Zhou B, et al. Gut microbiota facilitate chronic spontaneous urticaria. Nat Commun. 2024; 15(1):112. doi:10.1038/s41467-023-44373-x.

[11]

Amin P, Levin L, Holmes SJ, et al. Investigation of patient-specific characteristics associated with treatment outcomes for chronic urticaria. J Allergy Clin Immunol Pract. 2015; 3(3):400-407. doi:10.1016/j.jaip.2014.12.007.

[12]

Guillen-Aguinaga S, Jauregui Presa I, Aguinaga-Ontoso E, et al. Updosing nonsedating antihistamines in patients with chronic spontaneous urticaria: a systematic review and meta-analysis. Br J Dermatol. 2016; 175(6):1153-1165. doi:10.1111/bjd.14768.

[13]

Kanters TA, Thio HB, Hakkaart L. Cost-effectiveness of omalizumab for the treatment of chronic spontaneous urticaria. Br J Dermatol. 2018; 179(3):702-708. doi:10.1111/bjd.16476.

[14]

Türk M, Yilmaz I, Şahiner M, et al. Experience-based advice on stepping up and stepping down the therapeutic management of chronic spontaneous urticaria: Where is the guidance? Allergy. 2022; 77(5):1626-1630. doi:10.1111/all.15227.

[15]

Liang Y, Chen X, Ma B. Literature analysis of acupuncture for urticaria from Encyclopaedia of Traditional Chinese Medicine. Int J Trad Chin Med. 2019; 41(5):506-509. doi:10.3760/cma.j.issn.1673-4246.2019.05.016.

[16]

Zheng H, Xiao XJ, Shi YZ, et al. Efficacy of acupuncture for chronic spontaneous urticaria: a randomized controlled trial. Ann Intern Med. 2023; 176(12):1617-1624. doi:10.7326/M23-1043.

[17]

Li JQ, Li SJ, Wang L, et al. Electroacupuncture preconditioning relieves cutaneous passive anaphylaxis by down-regulating IP3 mediated ROS/TRPM2 signaling pathway and inhibiting mast cell degranulation in rats with urticaria. Zhen Ci Yan Jiu. 2023; 48(3):274-280. doi:10.13702/j.1000-0607.20220166.

[18]

Peng L, Wen L, Zhang J, et al. Circadian pharmacological effects of paeoniflorin on mice with urticaria-like lesions. Front Pharmacol. 2021; 12:639580. doi:10.3389/fphar.2021.639580.

[19]

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30(15):2114-2120. doi:10.1093/bioinformatics/btu170.

[20]

Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011; 27(16):2194-2200. doi:10.1093/bioinformatics/btr381.

[21]

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013; 10(10):996-998. doi:10.1038/nmeth.2604.

[22]

Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581-583. doi:10.1038/nmeth.3869.

[23]

Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37(8):852-857. doi:10.1038/s41587-019-0209-9.

[24]

Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590-D596. doi:10.1093/nar/gks1219.

[25]

Mahmud MR, Akter S, Tamanna SK, et al. Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes. 2022; 14(1):2096995. doi:10.1080/19490976.2022.2096995.

[26]

Xiao X, Hu X, Yao J, et al. The role of short-chain fatty acids in inflammatory skin diseases. Front Microbiol. 2022; 13:1083432. doi:10.3389/fmicb.2022.1083432.

[27]

Rezazadeh A, Shahabi S, Bagheri M, et al. The protective effect of Lactobacillus and Bifidobacterium as the gut microbiota members against chronic urticaria. Int Immunopharmacol. 2018; 59:168-173. doi:10.1016/j.intimp.2018.04.007.

[28]

Shi YZ, Tao QF, Qin HY, et al. Causal relationship between gut microbiota and urticaria: a bidirectional two-sample Mendelian randomization study. Front Microbiol. 2023; 14:1189484. doi:10.3389/fmicb.2023.1189484.

[29]

Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005; 308(5728):1635-1638. doi:10.1126/science.1110591.

[30]

Burrello C, Garavaglia F, Cribiù FM, et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun. 2018; 9(1):5184. doi:10.1038/s41467-018-07359-8.

[31]

Liu R, Peng C, Jing D, et al. Biomarkers of gut microbiota in chronic spontaneous urticaria and symptomatic dermographism. Front Cell Infect Microbiol. 2021; 11:703126. doi:10.3389/fcimb.2021.703126.

[32]

Cui Y, Zhang L, Wang X, et al. Roles of intestinal parabacteroides in human health and diseases. FEMS Microbiol Lett. 2022; 369(1):fnac072. doi:10.1093/femsle/fnac072.

[33]

Moreno-Arrones OM, Serrano-Villar S, Perez-Brocal V, et al. Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers. J Eur Acad Dermatol Venereol. 2020; 34(2):400-405. doi:10.1111/jdv.15885.

[34]

Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD 8 T cells and anti-cancer immunity. Nature. 2019; 565(7741):600-605. doi:10.1038/s41586-019-0878-z.

[35]

Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. 2018; 9:757. doi:10.3389/fmicb.2018.00757.

[36]

He B, Hoang TK, Wang T, et al. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp Med. 2017; 214(1):107-123. doi:10.1084/jem.20160961.

[37]

Hsieh FC, Lan CC, Huang TY, et al. Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food Funct. 2016; 7(5):2374-2388. doi:10.1039/c5fo01396h.

[38]

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009; 1(6):a001651. doi:10.1101/cshperspect.a001651.

[39]

Wang G, Huang S, Cai S, et al. Lactobacillus reuteri ameliorates intestinal inflammation and modulates gut microbiota and metabolic disorders in dextran sulfate sodium-induced colitis in mice. Nutrients. 2020; 12(8):2298. doi:10.3390/nu12082298.

[40]

Luo Z, Chen A, Xie A, et al. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol. 2023; 14:1228754. doi:10.3389/fimmu.2023.1228754.

[41]

Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms. 2022; 10(3):522. doi:10.3390/microorganisms10030522.

[42]

Jones SE, Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 2009; 9:35. doi:10.1186/1471-2180-9-35.

[43]

Lin YP, Thibodeaux CH, Pena JA, et al. Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. Inflamm Bowel Dis. 2008; 14(8):1068-1083. doi:10.1002/ibd.20448.

[44]

Deza G, Ricketti PA, Gimenez-Arnau AM, et al. Emerging biomarkers and therapeutic pipelines for chronic spontaneous urticaria. J Allergy Clin Immunol Pract. 2018; 6(4):1108-1117. doi:10.1016/j.jaip.2018.02.024.

[45]

Liu M, Hu R, Guo Y, et al. [Influence of Lactobacillus reuteri SL001 on intestinal microbiota in AD model mice and C57BL/6 mice]. Sheng Wu Gong Cheng Xue Bao. 2020; 36(9):1887-1898. doi:10.13345/j.cjb.200024.

[46]

Garg S, Singh TP, Malik RK. In vivo implications of potential probiotic Lactobacillus reuteri LR6 on the gut and immunological parameters as an adjuvant against protein energy malnutrition. Probiotics Antimicrob Proteins. 2020; 12(2):517-534. doi:10.1007/s12602-019-09563-4.

[47]

Yang J, Wang C, Liu L, et al. Lactobacillus reuteri KT 260178 supplementation reduced morbidity of piglets through its targeted colonization, improvement of cecal microbiota profile, and immune functions. Probiotics Antimicrob Proteins. 2020; 12(1):194-203. doi:10.1007/s12602-019-9514-3.

[48]

Liu Y, Tian X, He B, et al. Lactobacillus reuteri DSM 17938 feeding of healthy newborn mice regulates immune responses while modulating gut microbiota and boosting beneficial metabolites. Am J Physiol Gastrointest Liver Physiol. 2019; 317(6):G824-G838. doi:10.1152/ajpgi.00107.2019.

[49]

Khmaladze I, Butler E, Fabre S, et al. Lactobacillus reuteri DSM 17938-A comparative study on the effect of probiotics and lysates on human skin. Exp Dermatol. 2019; 28(7):822-828. doi:10.1111/exd.13950.

[50]

Zhao Y, Qi C, Li X, et al. Prevention of atopic dermatitis in mice by Lactobacillus reuteri Fn 041 through induction of regulatory T cells and modulation of the gut microbiota. Mol Nutr Food Res. 2022; 66(6):e2100699. doi:10.1002/mnfr.202100699.

[51]

Fang Z, Pan T, Wang H, et al. Limosilactobacillus reuteri attenuates atopic dermatitis via changes in gut bacteria and indole derivatives from tryptophan metabolism. Int J Mol Sci. 2022; 23(14):7735. doi:10.3390/ijms23147735.

[52]

Arshi S, Babaie D, Nabavi M, et al. Circulating level of CD4+ CD25+ FOXP3+ T cells in patients with chronic urticaria. Int J Dermatol. 2014; 53(12):e561-e566. doi:10.1111/ijd.12630.

[53]

Chen WC, Chiang BL, Liu HE, et al. Defective functions of circulating CD4+CD25+ and CD4+CD25- T cells in patients with chronic ordinary urticaria. J Dermatol Sci. 2008; 51(2):121-130. doi:10.1016/j.jdermsci.2008.02.012.

[54]

Zheng J, Wittouck S, Salvetti E, et al. A taxonomic note on the genus lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of lactobacillaceae and leuconostocaceae. Int J Syst Evol Microbiol. 2020; 70(4):2782-2858. doi:10.1099/ijsem.0.004107.

AI Summary AI Mindmap
PDF (1770KB)

811

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/