Licorice: comprehensive review of its chemical composition, pharmacodynamics, and medicinal value
Lingling Dang, Yajing Jin, Ye Yuan, Rui Shao, Wang Yu
Licorice: comprehensive review of its chemical composition, pharmacodynamics, and medicinal value
Licorice, a perennial herb of Leguminosa, is one of the oldest and most widely used herbal medicines worldwide. Its distinct sweet flavor and rich medicinal value make it an integral component of traditional Chinese medicine (TCM) formulations, which continue to be widely employed. The main chemical constituents of licorice include triterpenoid saponins, flavonoids, and polysaccharides. Experimental and clinical studies have demonstrated that various extracts and pure compounds derived from licorice exhibit a wide range of pharmacological properties including anti-inflammatory, antioxidant, antimicrobial, antiviral, antitumor, immune-regulatory, and neuroprotective activities. The bioactive constituents of licorice offer therapeutic benefits for cardiovascular and cerebrovascular diseases, diabetes mellitus, and liver disorders. This comprehensive review discusses the primary chemical constituents of licorice and their pharmacological activities, describes in vivo and in vitro models employed for studying licorice, and its potential targets and mechanisms of action. Furthermore, we discuss the toxicological profile, side effects, dosage recommendations, and clinical applications of licorice. This review aims to establish a foundation for further research on the safe and effective utilization of licorice while facilitating an in-depth exploration of its properties and fostering the development of novel therapeutic agents.
Active ingredients / Clinical application / Licorice / Pharmacological activity
[[1]] |
National Pharmacopoeia Committee.Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science Press; 2020.
|
[[2]] |
Yang R, Wang LQ, Yuan BC, et al.The pharmacological activities of licorice. Planta Med 2015;81(18):1654-1669.
|
[[3]] |
Hayashi H, Hattori S, Inoue K, et al.Field survey of Glycyrrhiza plants in Central Asia (3). Chemical characterization of G. glabra collected in Uzbekistan. Chem Pharm Bull (Tokyo) 2003;51(11): 1338-1340.
|
[[4]] |
Wenbin L, Lin L, Yidan Z, et al.Research status and trends of three kinds of medical radix glycyrrhizae based on bibliometric analysis(1992-2018). World Chin Med 2019;14(3):624-632.
|
[[5]] |
Zhao Y, Lv B, Feng X, et al.Perspective on biotransformation and de novo biosynthesis of licorice constituents. J Agric Food Chem 2017;65(51):11147-11156.
|
[[6]] |
Ding Y, Brand E, Wang W, et al.Licorice: resources, applications in ancient and modern times. J Ethnopharmacol 2022;298:115594.
|
[[7]] |
Asl MN, Hosseinzadeh H.Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008;22(6):709-724.
|
[[8]] |
Kao TC, Wu CH, Yen GC.Bioactivity and potential health benefits of licorice. J Agric Food Chem 2014;62(3):542-553.
|
[[9]] |
Tang ZH, Li T, Tong YG, et al.A systematic review of the anticancer properties of compounds isolated from licorice (Gancao). Planta Med 2015;81(18):1670-1687.
|
[[10]] |
Güçlü-Ustündağ O, Mazza G.Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 2007;47(3):231-258.
|
[[11]] |
Cheng M, Zhang J, Yang L, et al.Recent advances in chemical analysis of licorice (Gan-Cao). Fitoterapia 2021;149:104803.
|
[[12]] |
Wang L, Yang R, Yuan B, et al.The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B 2015;5(4):310-315.
|
[[13]] |
Ceccuzzi G, Rapino A, Perna B, et al.Liquorice toxicity: a comprehensive narrative review. Nutrients 2023;15(18):3866.
|
[[14]] |
Li W, Asada Y, Yoshikawa T.Flavonoid constituents from Glycyrrhiza glabra hairy root cultures. Phytochem 2000;55(5):447-456.
|
[[15]] |
Gupta VK, Fatima A, Faridi U, et al.Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol 2008;116(2): 377-380.
|
[[16]] |
Vaya J, Belinky PA, Aviram M.Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radic Biol Med 1997;23(2):302-313.
|
[[17]] |
Schweiger D, Baufeld C, Drescher P, et al.Efficacy of a new tonic containing urea, lactate, polidocanol, and glycyrrhiza inflata root extract in the treatment of a dry, itchy, and subclinically inflamed scalp. Skin Pharmacol Physiol 2013;26(2):108-118.
|
[[18]] |
Bai L, Li X, He L, et al.Antidiabetic potential of flavonoids from traditional Chinese medicine: a review. Am J Chin Med 2019;47(5):933-957.
|
[[19]] |
Wang H, Zhang D, Ge M, et al.Formononetin inhibits enterovirus 71 replication by regulating COX-2/PGE2 expression. Virol J 2015;12:35.
|
[[20]] |
Zhang Z, Yang L, Hou J, et al.Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J Ethnopharmacol 2021;267:113635.
|
[[21]] |
Yu Y, Shen M, Song Q, et al.Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym 2018;183:91-101.
|
[[22]] |
Pan LC, Zhu YM, Zhu ZY, et al.Chemical structure and effects of antioxidation and against α-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin. Int J Biol Macromol 2020;155:560-571.
|
[[23]] |
Wu Y, Zhou H, Wei K, et al.Structure of a new glycyrrhiza polysaccharide and its immunomodulatory activity. Front Immunol 2022;13:1007186.
|
[[24]] |
Zhang CH, Yu Y, Liang YZ, et al.Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. Int J Biol Macromol 2015;79:681-686.
|
[[25]] |
Shang Z, Liu C, Qiao X, et al.Chemical analysis of the Chinese herbal medicine licorice (Gan-Cao): an update review. J Ethnopharmacol 2022;299:115686.
|
[[26]] |
Sharma R, Singla RK, Banerjee S, et al.Revisiting Licorice as a functional food in the management of neurological disorders: bench to trend. Neurosci Biobehav Rev 2023;155:105452.
|
[[27]] |
Farag MA, Porzel A, Wessjohann LA.Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochem 2012;76:60-72.
|
[[28]] |
Li G, Nikolic D, van Breemen RB. Identification and chemical standardization of licorice raw materials and dietary supplements using UHPLC-MS/MS. J Agric Food Chem 2016; 64(42):8062-8070.
|
[[29]] |
Delazar A, Nahar L, Hamedeyazdan S, et al.Microwave-assisted extraction in natural products isolation. Methods Mol Biol 2012;864:89-115.
|
[[30]] |
Xu MS, Chen S, Wang WQ, et al.Employing bifunctional enzymes for enhanced extraction of bioactives from plants: flavonoids as an example. J Agric Food Chem 2013;61(33):7941-7948.
|
[[31]] |
Fu B, Li H, Wang X, et al.Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. J Agric Food Chem 2005;53(19):7408-7414.
|
[[32]] |
Ha H, Lee YS, Lee JH, et al.High performance liquid chromatographic analysis of isoflavones in medicinal herbs. Arch Pharm Res 2006;29(1):96-101.
|
[[33]] |
Kinoshita T, Tamura Y, Mizutani K.The isolation and structure elucidation of minor isoflavonoids from licorice of Glycyrrhiza glabra origin. Chem Pharm Bull (Tokyo) 2005;53(7):847-849.
|
[[34]] |
Wang CY, Kao TC, Lo WH, et al.Glycyrrhizic acid and 18β-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-κB through PI3K p110δ and p110γ inhibitions. J Agric Food Chem 2011;59(14): 7726-7733.
|
[[35]] |
Zhao H, Liu Z, Shen H, et al.Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharmacol 2016;781:92-99.
|
[[36]] |
Sun J, Zhang Q, Yang G, et al.The licorice flavonoid isoliquiritigenin attenuates Mycobacterium tuberculosis-induced inflammation through Notch1/NF-κB and MAPK signaling pathways. J Ethnopharmacol 2022;294:115368.
|
[[37]] |
Wei X, Li N, Wu X, et al.The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide-induced acute colitis in mice by modulating gut microbial communities. Int J Biol Macromol 2023;239:124199.
|
[[38]] |
Haleagrahara N, Varkkey J, Chakravarthi S.Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int J Mol Sci 2011;12(10):7100-7113.
|
[[39]] |
Agarwal MK, Iqbal M, Athar M.Inhibitory effect of 18beta-glycyrrhetinic acid on 12-O-tetradecanoyl phorbol-13- acetate-induced cutaneous oxidative stress and tumor promotion in mice. Redox Rep 2005;10(3):151-157.
|
[[40]] |
Fu Y, Chen J, Li YJ, et al.Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem 2013;141(2):1063-1071.
|
[[41]] |
Hu Y, Wang Z, Shen C, et al.Influence of the pK(a) value on the antioxidant activity of licorice flavonoids under solvent-mediated effects. Arch Pharm (Weinheim) 2023;356(4):e2200470.
|
[[42]] |
Zeng LH, Zhang HD, Xu CJ, et al.Neuroprotective effects of flavonoids extracted from licorice on kainate-induced seizure in mice through their antioxidant properties. J Zhejiang Univ Sci B 2013;14(11):1004-1012.
|
[[43]] |
Hong YK, Wu HT, Ma T, et al.Effects of Glycyrrhiza glabra polysaccharides on immune and antioxidant activities in high-fat mice. Int J Biol Macromol 2009;45(1):61-64.
|
[[44]] |
Biondi DM, Rocco C, Ruberto G.New dihydrostilbene derivatives from the leaves of Glycyrrhiza glabra and evaluation of their antioxidant activity. J Nat Prod 2003;66(4):477-480.
|
[[45]] |
Pastorino G, Cornara L, Soares S, et al.Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res 2018;32(12):2323-2339.
|
[[46]] |
Bahrenthien L, Kluess J, Berk A, et al.Detoxifying deoxynivalenol (DON)-contaminated feedstuff: consequences of sodium sulphite (SoS) treatment on performance and blood parameters in fattening pigs. Mycotoxin Res 2020;36(2):213-223.
|
[[47]] |
Li A, Zhao Z, Zhang S, et al.Fungicidal activity and mechanism of action of glabridin from Glycyrrhiza glabra L. Int J Mol Sci 2021;22(20):10966.
|
[[48]] |
Zhou T, Deng X, Qiu J.Antimicrobial activity of licochalcone E against Staphylococcus aureus and its impact on the production of staphylococcal alpha-toxin. J Microbiol Biotechnol 2012;22(6):800-805.
|
[[49]] |
Pompei R, Flore O, Marccialis MA, et al.Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979;281(5733):689-690.
|
[[50]] |
Cinatl J, Morgenstern B, Bauer G, et al.Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003;361(9374):2045-2046.
|
[[51]] |
Michaelis M, Geiler J, Naczk P, et al.Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol 2010;199(4):291-297.
|
[[52]] |
Tong T, Hu H, Zhou J, et al.Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small 2020;16(13):e1906206.
|
[[53]] |
Yang Y, Liu Y, Lou R, et al.Glycyrrhiza polysaccharides inhibits PRRSV replication. Virol J 2023;20(1):140.
|
[[54]] |
Huan C, Xu Y, Zhang W, et al.Glycyrrhiza polysaccharide inhibits pseudorabies virus infection by interfering with virus attachment and internalization. Viruses 2022;14(8):1772.
|
[[55]] |
Juin SK, Ghosh S, Majumdar S.Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: an immunotherapeutic approach. Int Immunopharmacol 2020;88:106932.
|
[[56]] |
Wang S, Shen Y, Qiu R, et al.18 β-glycyrrhetinic acid exhibits potent antitumor effects against colorectal cancer via inhibition of cell proliferation and migration. Int J Oncol 2017;51(2):615-624.
|
[[57]] |
Shao X, Chen X, Wang Z, et al.Diprenylated flavonoids from licorice induce death of SW480 colorectal cancer cells by promoting autophagy: activities of lupalbigenin and 6,8-diprenylgenistein. J Ethnopharmacol 2022;296:115488.
|
[[58]] |
Ayeka PA, Bian Y, Githaiga PM, et al.The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement Altern Med 2017;17(1):536.
|
[[59]] |
Guo M, Wang Z, Dai J, et al.Glycyrrhizic acid alleviates liver fibrosis in vitro and in vivo via activating CUGBP1-mediated IFN-γ/STAT1/Smad7 pathway. Phytomedicine 2023;112:154587.
|
[[60]] |
Huo HZ, Wang B, Liang YK, et al.Hepatoprotective and antioxidant effects of licorice extract against CCl4-induced oxidative damage in rats. Int J Mol Sci 2011;12(10):6529-6543.
|
[[61]] |
Liang B, Guo XL, Jin J, et al.Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J Gastroenterol 2015;21(17):5271-5280.
|
[[62]] |
Wang L, Kong L, Xu S, et al.Isoliquiritigenin-mediated miR- 23a-3p inhibition activates PGC-1α to alleviate alcoholic liver injury. Phytomedicine 2022;96:153845.
|
[[63]] |
Raphael TJ, Kuttan G.Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine 2003;10(6-7):483-489.
|
[[64]] |
Ma C, Ma Z, Liao XL, et al.Immunoregulatory effects of glycyrrhizic acid exerts anti-asthmatic effects via modulation of Th1/ Th2 cytokines and enhancement of CD4(+)CD25(+)Foxp3+ regulatory T cells in ovalbumin-sensitized mice. J Ethnopharmacol 2013;148(3):755-762.
|
[[65]] |
Li C, Duan S, Li Y, et al.Polysaccharides in natural products that repair the damage to intestinal mucosa caused by cyclophosphamide and their mechanisms: a review. Carbohydr Polym 2021;261:117876.
|
[[66]] |
Song W, Wang Y, Li G, et al.Modulating the gut microbiota is involved in the effect of low-molecular-weight Glycyrrhiza polysaccharide on immune function. Gut Microbes 2023;15(2):2276814.
|
[[67]] |
Akman T, Guven M, Aras AB, et al.The neuroprotective effect of glycyrrhizic acid on an experimental model of focal cerebral ischemia in rats. Inflammation 2015;38(4):1581-1588.
|
[[68]] |
Hasanein P.Glabridin as a major active isoflavan from Glycyrrhiza glabra (licorice) reverses learning and memory deficits in diabetic rats. Acta Physiol Hung 2011;98(2):221-230.
|
[[69]] |
Wang Q, Qiao X, Liu CF, et al.Metabolites identification of glycycoumarin, a major bioactive coumarin from licorice in rats. J Pharm Biomed Anal 2014;98:287-295.
|
[[70]] |
Zhang E, Yin S, Zhao S, et al.Protective effects of glycycoumarin on liver diseases. Phytother Res 2020;34(6):1191-1197.
|
[[71]] |
Zhang E, Yin S, Song X, et al.Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. Sci Rep 2016;6:38138.
|
[[72]] |
Lu S, Ye L, Yin S, et al.Glycyrol exerts potent therapeutic effect on lung cancer via directly inactivating T-LAK cell-originated protein kinase. Pharmacol Res 2019;147:104366.
|
[[73]] |
Tan D, Tseng HHL, Zhong Z, et al.Glycyrrhizic acid and its derivatives: promising candidates for the management of type 2 diabetes mellitus and its complications. Int J Mol Sci 2022;23(19):10988.
|
[[74]] |
Akutagawa K, Fujita T, Ouhara K, et al.Glycyrrhizic acid suppresses inflammation and reduces the increased glucose levels induced by the combination of Porphyromonas gulae and ligature placement in diabetic model mice. Int Immunopharmacol 2019;68:30-38.
|
[[75]] |
Yamashita Y, Kishida H, Nakagawa K, et al.Liquorice flavonoid oil suppresses hyperglycaemia accompanied by skeletal muscle myocellular GLUT4 recruitment to the plasma membrane in KK-A(y) mice. Int J Food Sci Nutr 2019;70(3):294-302.
|
[[76]] |
Bi X, Yang L, Lin Y, et al.Efficacy and safety of glycyrrhizic acid in treatment of autoimmune hepatitis. Am J Chin Med 2023;51(2):391-405.
|
[[77]] |
Jeong JH, Lee WH, Min SC, et al.Evaluation of the antiviral efficacy of subcutaneous nafamostat formulated with glycyrrhizic acid against SARS-CoV-2 in a murine model. Int J Mol Sci 2023;24(11):9579.
|
[[78]] |
Saeedi M, Morteza-Semnani K, Ghoreishi MR.The treatment of atopic dermatitis with licorice gel. J Dermatolog Treat 2003;14(3):153-157.
|
[[79]] |
Zhang KX, Wang PR, Chen F, et al.Synthesis and anti-HCV activities of 18β-glycyrrhetinic acid derivatives and their in-silico ADMET analysis. Curr Comput Aided Drug Des 2021;17(6):831-837.
|
[[80]] |
Hespeler D, Kaltenbach J, Pyo SM.Glabridin smartPearls—silica selection, production, amorphous stability and enhanced solubility. Int J Pharm 2019;561:228-235.
|
[[81]] |
Mukhopadhyay M, Panja P.A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Sep Purif Technol 2008;63(3):539-545.
|
[[82]] |
Atrux-Tallau N, Lasselin J, Han SH, et al.Quantitative analysis of ligand effects on bioefficacy of nanoemulsion encapsulating depigmenting active. Colloids Surf B Biointerfaces 2014;122:390-395.
|
[[83]] |
Callender VD, St Surin-Lord S, Davis EC, et al. Postinflammatory hyperpigmentation: etiologic and therapeutic considerations. Am J Clin Dermatol 2011;12(2):87-99.
|
[[84]] |
Yan B, Hou J, Li W, et al.A review on the plant resources of important medicinal licorice. J Ethnopharmacol 2023;301:115823.
|
[[85]] |
Yoshino T, Shimada S, Homma M, et al.Clinical risk factors of licorice-induced pseudoaldosteronism based on glycyrrhizinmetabolite concentrations: a narrative review. Front Nutr 2021;8:719197.
|
[[86]] |
Omar HR, Komarova I, El-Ghonemi M, et al.Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab 2012;3(4):125-138.
|
[[87]] |
van Beers EJ, Stam J, van den Bergh WM. Licorice consumption as a cause of posterior reversible encephalopathy syndrome: a case report. Crit Care 2011;15(1):R64.
|
[[88]] |
Deutch MR, Grimm D, Wehland M, et al.Bioactive candy: effects of licorice on the cardiovascular system. Foods 2019; 8(10):495.
|
[[89]] |
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, et al. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020;10(3):352.
|
[[90]] |
Latif SA, Conca TJ, Morris DJ.The effects of the licorice derivative, glycyrrhetinic acid, on hepatic 3 alpha- and 3 beta-hydroxysteroid dehydrogenases and 5 alpha- and 5 beta-reductase pathways of metabolism of aldosterone in male rats. Steroids 1990;55(2):52-58.
|
[[91]] |
Shin H, Chung M, Rose DZ.Licorice root associated with intracranial hemorrhagic stroke and cerebral microbleeds. Neurohospitalist 2019;9(3):169-171.
|
[[92]] |
Smedegaard SB, Svart MV.Licorice induced pseudohyperaldosteronism, severe hypertension, and long QT. Endocrinol Diabetes Metab Case Rep 2019;2019:19-0109.
|
/
〈 | 〉 |