Pharmacological effects of volatile oil from chrysanthemum and its associated mechanisms: a review
Jing Zhang, Weiqiang Su, Nina Filipczak, Ying Luo, Anping Wan, Yao He, Shijuan Yan, Xiang Li, Ming Yang
Pharmacological effects of volatile oil from chrysanthemum and its associated mechanisms: a review
Volatile oil (VO) is the main chemical component of common plants in Chrysanthemum genus, and it possesses several beneficial pharmacological properties, including bacteriostatic, antioxidant, anti-tumor, anti-inflammatory, antipyretic, analgesic, anti-osteoporotic, antihypertensive, sedative, and hypnotic effects. To date, research on the effective components of Chrysanthemum extract has mainly focused on flavonoids, whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components. In this review, the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal, aromatherapy, and diet therapy applications.
Action mechanisms / Chrysanthemum / Pharmacological activity / Volatile oil
[[1]] |
Wu D, Zhuang F, Wang J, et al.Metabolomics and transcriptomics revealed a comprehensive understanding of the biochemical and genetic mechanisms underlying the color variations in Chrysanthemums. Metabolites 2023;13(6):742.
|
[[2]] |
Liang X, Wu H, Su W.A rapid UPLC-PAD fingerprint analysis of Chrysanthemum morifolium Ramat combined with chemometrics methods. Food Anal Methods 2014;7(1):197-204.
|
[[3]] |
Lee M, Shim SY.Inhibitory effects of eriodictyol-7-O-β-d-glucuronide and 5,7-dihydroxy-4-chromene isolated from Chrysanthemum zawadskii var. latilobum in FcεRI-mediated human basophilic KU812F cell activation. Molecules 2020;25(4):994.
|
[[4]] |
Park S, Lee JB, Kang S.Topical application of Chrysanthemum indicum L. attenuates the development of atopic dermatitis-like skin lesions by suppressing serum IgE levels, IFN-γ, and IL-4 in Nc/Nga mice. Evid Based Complement Alternat Med 2012;2012:821967.
|
[[5]] |
Hanieh H, Leila S, Abolfazl S.Chrysanthemum, an ornamental genus with considerable medicinal value: a comprehensive review. S Afr J Bot 2022;144:23-43.
|
[[6]] |
Yuan H, Jiang S, Liu Y, et al.The flower head of Chrysanthemum morifolium Ramat. (Juhua): a paradigm of flowers serving as Chinese dietary herbal medicine. J Ethnopharmacol 2020;261:113043.
|
[[7]] |
Chinese Pharmacopoeia Commission.Pharmacopoeia of the People’s Republic of China. Beijing: China Medical Science Press; 2020:323, 328.
|
[[8]] |
Zhu S, Yang Y, Yu H, et al.Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J Ethnopharmacol 2005;96(1-2):151-158.
|
[[9]] |
Kuang CL, Lv D, Shen GH, et al.Chemical composition and antimicrobial activities of volatile oil extracted from Chrysanthemum morifolium Ramat. J Food Sci Technol 2018;55(7):2786-2794.
|
[[10]] |
Lin L, Mao X, Sun Y, et al.Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int J Food Microbiol 2018;292:21-30.
|
[[11]] |
Kim BS, Park SJ, Kim MK, et al.Inhibitory effects of Chrysanthemum boreale essential oil on biofilm formation and virulence factor expression of Streptococcus mutans. Evid Based Complement Alternat Med 2015;2015:616309.
|
[[12]] |
Youssef FS, Eid SY, Alshammari E, et al.Chrysanthemum indicum and Chrysanthemum morifolium: chemical composition of their essential oils and their potential use as natural preservatives with antimicrobial and antioxidant activities. Foods 2020;9(10):1460.
|
[[13]] |
Chang KM, Kim GH.Volatiles of Chrysanthemum zawadskii var. latilobum K. Prev Nutr Food Sci 2012;17(3):234-238.
|
[[14]] |
Carson CF, Mee BJ, Riley TV.Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002;46(6):1914-1920.
|
[[15]] |
Angane M, Swift S, Huang K, et al.Essential oils and their major components: an updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022;11(3):464.
|
[[16]] |
Nazzaro F, Fratianni F, De Martino L, et al.Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 2013;6(12):1451-1474.
|
[[17]] |
Burt S.Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 2004;94(3):223-253.
|
[[18]] |
Han XB, Zhao J, Cao JM, et al.Essential oil of Chrysanthemum indicum L.: potential biocontrol agent against plant pathogen Phytophthora nicotianae. Environ Sci Pollut Res Int 2019;26(7):7013-7023.
|
[[19]] |
Kalemba D, Kunicka A.Antibacterial and antifungal properties of essential oils. Curr Med Chem 2003;10(10):813-829.
|
[[20]] |
Labbozzetta M, Poma P, Occhipinti C, et al.Antitumor effect of Glandora rosmarinifolia (Boraginaceae) essential oil through inhibition of the activity of the Topo II enzyme in acute myeloid leukemia. Molecules 2022;27(13):4203.
|
[[21]] |
Hassannejad N, Bahador A, Rudbari NH, et al.In vivo antibacterial activity of Zataria multiflora Boiss extract and its components, carvacrol, and thymol, against colistin-resistant Acinetobacter baumannii in a pneumonic BALB/c mouse model. J Cell Biochem 2019;120(11):18640-18649.
|
[[22]] |
Cui H, Bai M, Sun Y, et al.Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J Funct Foods 2018;48:159-166.
|
[[23]] |
Vasconcelos NG, Croda J, Simionatto S.Antibacterial mechanisms of cinnamon and its constituents: a review. Microb Pathog 2018;120:198-203.
|
[[24]] |
Ahmad A, Khan A, Yousuf S, et al.Proton translocating ATPase mediated fungicidal activity of eugenol and thymol. Fitoterapia 2010;81(8):1157-1162.
|
[[25]] |
da Silva BD, Bernardes PC, Pinheiro PF, et al. Chemical composition, extraction sources and action mechanisms of essential oils: natural preservative and limitations of use in meat products. Meat Sci 2021;176:108463.
|
[[26]] |
Tapia-Rodriguez MR, Bernal-Mercado AT, Gutierrez-Pacheco MM, et al.Virulence of Pseudomonas aeruginosa exposed to carvacrol: alterations of the quorum sensing at enzymatic and gene levels. J Cell Commun Signaling 2019;13(4):531-537.
|
[[27]] |
Tasneem S, Liu B, Li B, et al.Molecular pharmacology of inflammation: medicinal plants as anti-inflammatory agents. Pharmacol Res 2019;139:126-140.
|
[[28]] |
Liu C, Chu D, Kalantar-Zadeh K, et al.Cytokines: from clinical significance to quantification. Adv Sci (Weinh) 2021;8(15):e2004433.
|
[[29]] |
Tayal V, Kalra BS.Cytokines and anti-cytokines as therapeutics— an update. Eur J Pharmacol 2008;579(1-3):1-12.
|
[[30]] |
Cheon MS, Yoon T, Lee DY, et al.Chrysanthemum indicum Linné extract inhibits the inflammatory response by suppressing NF-kappaB and MAPKs activation in lipopolysaccharideinduced RAW 264.7 macrophages. J Ethnopharmacol 2009;122(3):473-477.
|
[[31]] |
Jiang S, Wang M, Jiang Z, et al.Chemistry and pharmacological activity of sesquiterpenoids from the Chrysanthemum genus. Molecules 2021;26(10):3038.
|
[[32]] |
Kim JG, Lee JW, Le TPL, et al.Sesquiterpenoids from Chrysanthemum indicum with inhibitory effects on NO production. J Nat Prod 2021;84(3):562-569.
|
[[33]] |
Li S, Gao X, Wu X, et al.Parthenolide inhibits LPS-induced inflammatory cytokines through the toll-like receptor 4 signal pathway in THP-1 cells. Acta Biochim Biophys Sin (Shanghai) 2015;47(5):368-375.
|
[[34]] |
Pyee Y, Chung H-J, Choi TJ, et al.Suppression of inflammatory responses by handelin, a guaianolide dimer from Chrysanthemum boreale, via downregulation of NF-κB signaling and proinflammatory cytokine production. J Nat Prod 2014;77(4):917-924.
|
[[35]] |
Yoon WJ, Moon JY, Song G, et al.Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food Chem Toxicol 2010;48(5):1222-1229.
|
[[36]] |
Hoesel B, Schmid JA.The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013;12:86.
|
[[37]] |
Yang L, Liu J, Li Y, et al.Bornyl acetate suppresses ox-LDLinduced attachment of THP-1 monocytes to endothelial cells. Biomed Pharmacother 2018;103:234-239.
|
[[38]] |
Krishna M, Narang H.The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 2008;65(22):3525-3544.
|
[[39]] |
Raman M, Chen W, Cobb MH.Differential regulation and properties of MAPKs. Oncogene 2007;26(22):3100-3112.
|
[[40]] |
Zhuo F-F, Zhang C, Zhang H, et al.Chrysanthemulide A induces apoptosis through DR5 upregulation via JNK-mediated autophagosome accumulation in human osteosarcoma cells. J Cell Physiol 2019;234(8):13191-13208.
|
[[41]] |
Chen L, Liu Y, Huang X, et al.Comparison of chemical constituents and pharmacological effects of different varieties of Chrysanthemum Flos in China. Chem Biodivers 2021;18(8):e2100206.
|
[[42]] |
Yang L, Nuerbiye A, Cheng P, et al.Analysis of floral volatile components and antioxidant activity of different varieties of Chrysanthemum morifolium. Molecules 2017;22(10):1790.
|
[[43]] |
Amorati R, Foti MC, Valgimigli L.Antioxidant activity of essential oils. J Agric Food Chem 2013;61(46):10835-10847.
|
[[44]] |
Zeb A.Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 2020;44(9):e13394.
|
[[45]] |
Kim S-J.Chapter 21—Herbal Chrysanthemi Flos, oxidative damage and protection against diabetic complications. In: Preedy VR, ed. Diabetes: Oxidative Stress and Dietary Antioxidants. Pittsburgh: Academic Press; 2014:201-211.
|
[[46]] |
Lee BH, Nam TG, Park WJ, et al.Antioxidative and neuroprotective effects of volatile components in essential oils from Chrysanthemum indicum Linn, flowers. Food Sci Biotechnol 2015;24(2):717-723.
|
[[47]] |
Bardaweel SK, Tawaha KA, Hudaib MM.Antioxidant, antimicrobial and antiproliferative activities of Anthemis palestina essential oil. BMC Complement Altern Med 2014;14:297.
|
[[48]] |
Kim DY, Won KJ, Hwang DI, et al.Chemical composition, antioxidant and anti-melanogenic activities of essential oils from Chrysanthemum boreale Makino at different harvesting stages. Chem Biodivers 2018;15(2):e1700506.
|
[[49]] |
Zhan G, Long M, Shan K, et al.Antioxidant effect of Chrysanthemum morifolium (Chuju) extract on H2O2-treated L-O2 cells as revealed by LC/MS-based metabolic profiling. Antioxidants (Basel) 2022;11(6):1068.
|
[[50]] |
Liu Y, Zhou F, Shu HZ, et al.Germacrane-type sesquiterpenoids from the flowers of Chrysanthemum indicum with hepatoprotective activity. Food Chem Toxicol 2023;177:113850.
|
[[51]] |
Ma A, Zou F, Zhang R, et al.The effects and underlying mechanisms of medicine and food homologous flowers on the prevention and treatment of related diseases. J Food Biochem 2022;46(12):e14430.
|
[[52]] |
Yang HM, Sun CY, Liang JL, et al.Supercritical-carbon dioxide fluid extract from Chrysanthemum indicum enhances anti-tumor effect and reduces toxicity of bleomycin in tumor-bearing mice. Int J Mol Sci 2017;18(3):465.
|
[[53]] |
Tang T, Liao ZG, Dong W, et al.Correlation between four properties of traditional Chinese medicine and function of reversing multidrug resistance of tumor cells. Zhongguo Zhong Yao Za Zhi 2017;42(4):795-799.
|
[[54]] |
Liu LL, Chen J, Shi YP.Advance in studies on antitumor of Chinese materia medica with heat-clearing and toxin-resolving functions. Chin Tradit Herb Drugs 2012;43(6):1203-1212.
|
[[55]] |
Su J, Lai H, Chen J, et al.Natural borneol, a monoterpenoid compound, potentiates selenocystine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. PLoS One 2013;8(5):e63502.
|
[[56]] |
Cao WQ, Zhai XQ, Ma JW, et al.Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway. Pharm Biol 2020;58(1):72-79.
|
[[57]] |
Cho M, So I, Chun JN, et al.The antitumor effects of geraniol: modulation of cancer hallmark pathways (review). Int J Oncol 2016;48(5):1772-1782.
|
[[58]] |
Silva G, Marques JNJ, Linhares EPM, et al.Review of anticancer activity of monoterpenoids: geraniol, nerol, geranial and neral. Chem Biol Interact 2022;362:109994.
|
[[59]] |
Lee JY, Park H, Lim W, et al.Therapeutic potential of α,β- thujone through metabolic reprogramming and caspasedependent apoptosis in ovarian cancer cells. J Cell Physiol 2021;236(2):1545-1558.
|
[[60]] |
Biswas R, Mandal SK, Dutta S, et al.Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: evidences from in vitro studies on A375 cells. Evid Based Complement Alternat Med 2011;2011:568148.
|
[[61]] |
Lee JY, Park H, Lim W, et al.α,β-Thujone suppresses human placental choriocarcinoma cells via metabolic disruption. Reproduction 2020;159(6):745-756.
|
[[62]] |
Mukhtar YM, Adu-Frimpong M, Xu X, et al. Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep2018;38(6):BSR20181253.
|
[[63]] |
Araújo-Filho HG, Dos Santos JF, Carvalho MTB, et al.Anticancer activity of limonene: a systematic review of target signaling pathways. Phytother Res 2021;35(9):4957-4970.
|
[[64]] |
Sampaio LA, Pina LTS, Serafini MR, et al.Antitumor effects of carvacrol and thymol: a systematic review. Front Pharmacol 2021;12:702487.
|
[[65]] |
Suntres ZE, Coccimiglio J, Alipour M.The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr 2015;55(3):304-318.
|
[[66]] |
Xu Q, Li M, Yang M, et al. α-Pinene regulates miR-221 and induces G(2)/M phase cell cycle arrest in human hepatocellular carcinoma cells. Biosci Rep2018;38(6):BSR20180980.
|
[[67]] |
Chen W, Liu Y, Li M, et al.Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J Pharmacol Sci 2015;127(3):332-338.
|
[[68]] |
Islam MT, Khalipha ABR, Bagchi R, et al.Anticancer activity of thymol: a literature-based review and docking study with emphasis on its anticancer mechanisms. IUBMB Life 2019;71(1):9-19.
|
[[69]] |
Bai Z, Yao C, Zhu J, et al.Anti-tumor drug discovery based on natural product β-elemene: anti-tumor mechanisms and structural modification. Molecules 2021;26(6):1499.
|
[[70]] |
Zhai B, Zhang N, Han X, et al.Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: a review. Biomed Pharmacother 2019;114:108812.
|
[[71]] |
Chung KS, Hong JY, Lee JH, et al.β-Caryophyllene in the essential oil from Chrysanthemum boreale induces G(1) phase cell cycle arrest in human lung cancer cells. Molecules 2019;24(20):3754.
|
[[72]] |
Fidyt K, Fiedorowicz A, Strządała L, et al.β-Caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med 2016;5(10):3007-3017.
|
[[73]] |
Park KR, Nam D, Yun HM, et al.β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/ AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett 2011;312(2):178-188.
|
[[74]] |
Cai ZM, Peng JQ, Chen Y, et al.1,8-Cineole: a review of source, biological activities, and application. J Asian Nat Prod Res 2021;23(10):938-954.
|
[[75]] |
Eddin LB, Jha NK, Goyal SN, et al.Health benefits, pharmacological effects, molecular mechanisms, and therapeutic potential of α-bisabolol. Nutrients 2022;14(7):1370.
|
[[76]] |
Jin M, Xiao Z, Zhang S, et al.Possible involvement of Fas/FasLdependent apoptotic pathway in α-bisabolol induced cardiotoxicity in zebrafish embryos. Chemosphere 2018;219:557-566.
|
[[77]] |
Rigo A, Vinante F.The antineoplastic agent α-bisabolol promotes cell death by inducing pores in mitochondria and lysosomes. Apoptosis 2016;21(8):917-927.
|
[[78]] |
Sztiller-Sikorska M, Czyz M.Parthenolide as cooperating agent for anti-cancer treatment of various malignancies. Pharmaceuticals (Basel) 2020;13(8):194.
|
[[79]] |
Liu X, Wang X.Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med 2022;20(11):814-829.
|
[[80]] |
Freund RRA, Gobrecht P, Fischer D, et al.Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020;37(4):541-565.
|
[[81]] |
Cui ZY, Wang G, Zhang J, et al.Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother Res 2021;35(10):5680-5693.
|
[[82]] |
Czyz M, Lesiak-Mieczkowska K, Koprowska K, et al.Cell contextdependent activities of parthenolide in primary and metastatic melanoma cells. Br J Pharmacol 2010;160(5):1144-1157.
|
[[83]] |
Oka D, Nishimura K, Shiba M, et al.Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-κB. Int J Cancer 2007;120(12):2576-2581.
|
[[84]] |
Zhang R, Pan T, Xiang Y, et al.β-Elemene reverses the resistance of p53-deficient colorectal cancer cells to 5-fluorouracil by inducing pro-death autophagy and cyclin D3-dependent cycle arrest. Front Bioeng Biotechnol 2020;8:378.
|
[[85]] |
Sampath S, Subramani S, Janardhanam S, et al.Bioactive compound 1,8-cineole selectively induces G2/M arrest in A431 cells through the upregulation of the p53 signaling pathway and molecular docking studies. Phytomedicine 2018;46:57-68.
|
[[86]] |
Murata S, Shiragami R, Kosugi C, et al.Antitumor effect of 1, 8-cineole against colon cancer. Oncol Rep 2013;30(6):2647-2652.
|
[[87]] |
Lee J, Ha SJ, Park J, et al.1,8-Cineole prevents UVB-induced skin carcinogenesis by targeting the aryl hydrocarbon receptor. Oncotarget 2017;8(62):105995-106008.
|
[[88]] |
Rodenak-Kladniew B, Castro A, Stärkel P, et al.1,8-Cineole promotes G0/G1 cell cycle arrest and oxidative stress-induced senescence in HepG2 cells and sensitizes cells to anti-senescence drugs. Life Sci 2020;243:117271.
|
[[89]] |
Walter EJ, Hanna-Jumma S, Carraretto M, et al.The pathophysiological basis and consequences of fever. Crit Care 2016;20(1):200.
|
[[90]] |
Basbaum AI, Bautista DM, Scherrer G, et al.Cellular and molecular mechanisms of pain. Cell 2009;139(2):267-284.
|
[[91]] |
Woolf CJ.What is this thing called pain? J Clin Invest 2010;120(11):3742-3744.
|
[[92]] |
Wang R, Han L, Gao Q, et al.Progress on active analgesic components and mechanisms of commonly used traditional Chinese medicines: a comprehensive review. J Pharm Pharm Sci 2018;21(1):437-480.
|
[[93]] |
Inaba H, Yoshigai E, Okuyama T, et al.Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 2015;44:61-70.
|
[[94]] |
Zhao-dan W, Ji-han S, Tian-qi P, et al. Antipyretic mechanism of Chrysanthemum morifolium essential oil on fever New Zealand rabbits model induced by endotoxin. Shizhen Guoyi Guoyao 2018;29(9):2053-2056.
|
[[95]] |
Dong Z, Dai H, Feng Z, et al.Mechanism of herbal medicine on hypertensive nephropathy (Review). Mol Med Rep 2021;23(4):234.
|
[[96]] |
Tang F, Yan HL, Wang LX, et al.Review of natural resources with vasodilation: traditional medicinal plants, natural products, and their mechanism and clinical efficacy. Front Pharmacol 2021;12:627458.
|
[[97]] |
Pinto NV, Assreuy AMS, Coelho-de-Souza AN, et al. Endotheliumdependent vasorelaxant effects of the essential oil from aerial parts of Alpinia zerumbet and its main constituent 1,8-cineole in rats. Phytomedicine 2009;16(12):1151-1155.
|
[[98]] |
Alamgeer, Auger C, Chabert P, et al. Mechanisms underlying vasorelaxation induced in the porcine coronary arteries by Thymus linearis, Benth. J Ethnopharmacol 2018;225:211-219.
|
[[99]] |
Kim D-S, Goo Y-M, Cho J, et al.Effect of volatile organic chemicals in Chrysanthemum indicum Linné on blood pressure and electroencephalogram. Molecules 2018;23(8):2063.
|
[[100]] |
Gao T, Zhu Z-Y, Zhou X, et al.Chrysanthemum morifolium extract improves hypertension-induced cardiac hypertrophy in rats by reduction of blood pressure and inhibition of myocardial hypoxia inducible factor-1alpha expression. Pharm Biol 2016;54(12):2895-2900.
|
[[101]] |
Vgontzas AN, Puzino K, Fernandez-Mendoza J, et al.Effects of trazodone versus cognitive behavioral therapy in the insomnia with short sleep duration phenotype: a preliminary study. J Clin Sleep Med 2020;16(12):2009-2019.
|
[[102]] |
Shi MM, Piao JH, Xu XL, et al.Chinese medicines with sedative-hypnotic effects and their active components. Sleep Med Rev 2016;29:108-118.
|
[[103]] |
Riemann D, Krone LB, Wulff K, et al.Sleep, insomnia, and depression. Neuropsychopharmacology 2020;45(1):74-89.
|
[[104]] |
Cui J, Li M, Wei Y, et al.Inhalation aromatherapy via braintargeted nasal delivery: natural volatiles or essential oils on mood disorders. Front Pharmacol 2022;13:860043.
|
[[105]] |
Kim JW, Han JY, Hong JT, et al.Ethanol extract of the flower Chrysanthemum morifolium augments pentobarbital-induced sleep behaviors: involvement of Cl channel activation. Evid Based Complement Alternat Med 2011;2011:109164.
|
[[106]] |
Kim M, Kim Y, Lee HW, et al.Chrysanthemum morifolium and its bioactive substance enhanced the sleep quality in rodent models via Cl- channel activation. Nutrients 2023;15(6):1309.
|
[[107]] |
Wang W.The study on sedative and hypnotic effects of Chrysanthemum extract. Master. Henan University. 2020.
|
[[108]] |
Yang TL, Shen H, Liu A, et al.A road map for understanding molecular and genetic determinants of osteoporosis. Nat Rev Endocrinol 2020;16(2):91-103.
|
[[109]] |
Zhang ND, Han T, Huang BK, et al.Traditional Chinese medicine formulas for the treatment of osteoporosis: implication for antiosteoporotic drug discovery. J Ethnopharmacol 2016;189:61-80.
|
[[110]] |
Mühlbauer RC, Lozano A, Palacio S, et al.Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone 2003;32(4):372-380.
|
[[111]] |
Dolder S, Hofstetter W, Wetterwald A, et al.Effect of monoterpenes on the formation and activation of osteoclasts in vitro. J Bone Miner Res 2006;21(4):647-655.
|
[[112]] |
Mi CK, Mi CE, Hee KG.Chemical constituents of Chrysanthemum indicum L. flower oil and effect on osteoblastic MC3T3-E1 cells. Food Sci Biotechnol 2010;19(3):815-819.
|
[[113]] |
Liao CH, Xiao HT, Zheng K, et al.Natural products: the master regulators of antiviral cytokines. Curr Org Chem 2017;21(18):1805-1823.
|
[[114]] |
Parvez MK, Arbab AH, Al-Dosari MS, et al.Antiviral natural products against chronic hepatitis B: recent developments. Curr Pharm Des 2016;22(3):286-293.
|
[[115]] |
Mieres-Castro D, Ahmar S, Shabbir R, et al.Antiviral activities of eucalyptus essential oils: their effectiveness as therapeutic targets against human viruses. Pharmaceuticals (Basel) 2021;14(12):1210.
|
[[116]] |
Zheng K, Wu SZ, Lv YW, et al.Carvacrol inhibits the excessive immune response induced by influenza virus A via suppressing viral replication and TLR/RLR pattern recognition. J Ethnopharmacol 2021;268:113555.
|
[[117]] |
Hassanin O, Abdallah F, Galal AAA.In vitro and in vivo experimental trials to assess the modulatory influence of β- caryophyllene on NDV replication and immunopathogenesis. Comp Immunol Microbiol Infect Dis 2020;73:101547.
|
[[118]] |
Liu LL, Ha TK, Ha W, et al.Sesquiterpenoids with various carbocyclic skeletons from the flowers of Chrysanthemum indicum. J Nat Prod 2017;80(2):298-307.
|
[[119]] |
Sherry M, Charcosset C, Fessi H, et al.Essential oils encapsulated in liposomes: a review. J Liposome Res 2013;23(4):268-275.
|
[[120]] |
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, et al.Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020;99:474-486.
|
[[121]] |
Wu Y, Wan N, Liu Y, et al.Stability improvement of Chinese medicinal essential oils based on delivery systems and their application in medical field. Zhongguo Zhong Yao Za Zhi 2022;47(3):603-610.
|
[[122]] |
Arora D, Saneja A, Jaglan S.Cyclodextrin-based delivery systems for dietary pharmaceuticals. Environ Chem Lett 2019;17(3):1263-1270.
|
[[123]] |
Qin D, Meng X, Li L.Synthesis and characterization of Jia- Xiang chrysanthemum volatile oil/β-cyclodextrin inclusion complex. Proc Natl Acad Sci India Phys Sci 2014;84(3):381-385.
|
[[124]] |
Lin L, Gu Y, Sun Y, et al.Characterization of chrysanthemum essential oil triple-layer liposomes and its application against Campylobacter jejuni on chicken. LWT 2019;107:16-24.
|
[[125]] |
Mun H, Townley HE.Nanoencapsulation of plant volatile organic compounds to improve their biological activities. Planta Med 2021;87(3):236-251.
|
[[126]] |
Sana SS, Li H, Zhang Z, et al.Recent advances in essential oilsbased metal nanoparticles: a review on recent developments and biopharmaceutical applications. J Mol Liq 2021;333:115951.
|
[[127]] |
Garcia CR, Malik MH, Biswas S, et al.Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022;10(3):633-653.
|
[[128]] |
Cimino C, Maurel OM, Musumeci T, et al.Essential oils: pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021;13(3):327.
|
[[129]] |
Kim DY, Won KJ, Yoon MS, et al.Chrysanthemum boreale Makino essential oil induces keratinocyte proliferation and skin regeneration. Nat Prod Res 2015;29(6):562-564.
|
[[130]] |
Tran KN, Nguyen NPK, Nguyen LTH, et al.Screening for neuroprotective and rapid antidepressant-like effects of 20 essential oils. Biomedicines 2023;11(5):1248.
|
[[131]] |
Tan LF, Elaine E, Pui LP, et al.Development of chitosan edible film incorporated with Chrysanthemum morifolium essential oil. Acta Sci Pol Technol Aliment 2021;20(1):55-66.
|
[[132]] |
Alvarez-Castellanos PP, Bishop CD, Pascual-Villalobos MJ.Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochem 2001;57(1): 99-102.
|
/
〈 | 〉 |