Metal ions as effectual tools for cancer with traditional Chinese medicine

Lei Wang, Yingqiu Xie, Sandugash Myrzagali, Weiling Pu, Erwei Liu

PDF(1088 KB)
PDF(1088 KB)
Acupuncture and Herbal Medicine ›› 2023, Vol. 3 ›› Issue (4) : 296-308. DOI: 10.1097/HM9.0000000000000083
Review Articles
research-article

Metal ions as effectual tools for cancer with traditional Chinese medicine

Author information +
History +

Abstract

Malignant tumor has become a major threat affecting human health, and is one of the main causes of human death. Recent studies have shown that many traditional Chinese medicines (TCM) have good anti-tumor activity, which may improve the therapeutic effect of routine treatment and quality of life with lower toxicity. However, the efficacy of TCM alone for the treatment of tumors is limited. Metal ions are essential substances for maintaining normal physiological activities. This article summarized the multiple mechanisms in which metal ions are involved in the prevention and treatment of tumors in TCM.

Keywords

Metal ions / Traditional Chinese medicine / Treatment modalities / Tumor development

Cite this article

Download citation ▾
Lei Wang, Yingqiu Xie, Sandugash Myrzagali, Weiling Pu, Erwei Liu. Metal ions as effectual tools for cancer with traditional Chinese medicine. Acupuncture and Herbal Medicine, 2023, 3(4): 296‒308 https://doi.org/10.1097/HM9.0000000000000083

References

[[1]]
Arjmand B, Hamidpour SK, Tayanloo-Beik A, et al.Machine learning: a new prospect in multi-omics data analysis of cancer. Front Genet. 2022;13:824451.
[[2]]
Miller KD, Ortiz AP, Pinheiro PS, et al.Cancer statistics for the US Hispanic/Latino population, 2021. CA Cancer J Clin. 2021;71(6):466-487.
[[3]]
Xia C, Dong X, Li H, et al.Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584-590.
[[4]]
Giordano A, Tommonaro G.Curcumin and cancer. Nutrients. 2019;11(10):2376.
[[5]]
Tomeh MA, Hadianamrei R, Zhao X.A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033.
[[6]]
Zhang L, Xu Q, Li Y, et al.Ameliorative effects of component Chinese medicine from Curcumae rhizoma and Sparganii rhizoma, a traditional herb pair, on uterine leiomyoma in a rat model. Front Public Health. 2021;9:674357.
[[7]]
Fu L, Han B, Zhou Y, et al.The anticancer properties of Tanshinones and the pharmacological effects of their active ingredients. Front Pharmacol. 2020;11:193.
[[8]]
Liskova A, Koklesova L, Samec M, et al.Flavonoids in cancer metastasis. Cancers (Basel). 2020;12(6):1498.
[[9]]
Xu H, Van der Jeught K, Zhou Z, et al. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Invest. 2021;131(10):e146832.
[[10]]
Xu B, Cheng Q, So WKW.Review of the effects and safety of traditional Chinese medicine in the treatment of cancer cachexia. Asia Pac J Oncol Nurs. 2021;8(5):471-486.
[[11]]
Zhang X, Qiu H, Li C, et al.The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci Trends. 2021;15(5):283-298.
[[12]]
G MS, Swetha M, Keerthana CK, et al. Cancer chemoprevention: a strategic approach using phytochemicals. Front Pharmacol. 2022;12:809308.
[[13]]
Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M.An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother. 2019;111:1277-1289.
[[14]]
Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D.The role of Fe, Zn, and Cu in pregnancy. Biomolecules. 2020;10(8):1176.
[[15]]
Moustakas M.The role of metal ions in biology, biochemistry and medicine. Materials (Basel). 2021;14(3):549.
[[16]]
Liu Y, Wang Y, Song S, et al.Cancer therapeutic strategies based on metal ions. Chem Sci. 2021;12(37):12234-12247.
[[17]]
Zhu Y, Costa M.Metals and molecular carcinogenesis. Carcinogenesis. 2020;41(9):1161-1172.
[[18]]
Stelling MP, Motta JM, Mashid M, et al.Metal ions and the extracellular matrix in tumor migration. FEBS J. 2019;286(15):2950-2964.
[[19]]
Wang C, Zhang R, Wei X, et al.Metalloimmunology: the metal ion-controlled immunity. Adv Immunol. 2020;145:187-241.
[[20]]
Xu J, Wang J, Ye J, et al.Metal-coordinated supramolecular self-assemblies for cancer theranostics. Adv Sci (Weinh). 2021;8(16):e2101101.
[[21]]
Xu D, Hu MJ, Wang YQ, et al.Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123.
[[22]]
Vervandier-Fasseur D, Latruffe N.The potential use of resveratrol for cancer prevention. Molecules. 2019;24(24):4506.
[[23]]
Nagoor Meeran MF, Javed H, Al Taee H, et al.Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol. 2017;8:380.
[[24]]
Liu ZH, Yang CX, Zhang L, et al.Baicalein, as a prooxidant, triggers mitochondrial apoptosis in MCF-7 human breast cancer cells through mobilization of intracellular copper and reactive oxygen species generation. Onco Targets Ther. 2019;12:10749-10761.
[[25]]
Farhan M, Khan HY, Oves M, et al.Cancer therapy by catechins involves redox cycling of copper ions and generation of reactive oxygen species. Toxins (Basel). 2016;8(2):37.
[[26]]
Banaspati A, Raza MK, Goswami TK.Ni(II) curcumin complexes for cellular imaging and photo-triggered in vitro anticancer activity. Eur J Med Chem. 2020;204:112632.
[[27]]
Li S, Xu G, Zhu Y, et al.Bifunctional ruthenium(II) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans. 2020;49(27):9454-9463.
[[28]]
Mohammed F, Rashid-Doubell F, Taha S, et al.Effects of curcumin complexes on MDA-MB-231 breast cancer cell proliferation. Int J Oncol. 2020;57(2):445-455.
[[29]]
Meza-Morales W, Estévez-Carmona MM, Alvarez-Ricardo Y, et al.Full structural characterization of homoleptic complexes of diacetylcurcumin with Mg, Zn, Cu, and Mn: cisplatin-level cytotoxicity in vitro with minimal acute toxicity in vivo. Molecules. 2019;24(8):1598.
[[30]]
Miklášová N, Herich P, Dávila-Becerril JC, et al.Evaluation of antiproliferative palladium(II) complexes of synthetic bisdemethoxycurcumin towards in vitro cytotoxicity and molecular docking on DNA sequence. Molecules. 2021;26(14):4369.
[[31]]
Roy S, Banerjee S, Chakraborty T.Vanadium quercetin complex attenuates mammary cancer by regulating the p53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events. Biometals. 2018;31(4):647-671.
[[32]]
Roy S, Das R, Ghosh B, et al.Deciphering the biochemical and molecular mechanism underlying the in vitro and in vivo chemotherapeutic efficacy of ruthenium quercetin complex in colon cancer. Mol Carcinog. 2018;57(6):700-721.
[[33]]
Roy S, Chakraborty T.Deciphering the molecular mechanism and apoptosis underlying the in vitro and in vivo chemotherapeutic efficacy of vanadium luteolin complex in colon cancer. Cell Biochem Funct. 2018;36(3):116-128.
[[34]]
Roy S, Sil A, Chakraborty T.Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol. 2019;234(4):4888-4909.
[[35]]
Wang Y, Bian L, Chakraborty T, et al.Construing the biochemical and molecular mechanism underlying the in vivo and in vitro chemotherapeutic efficacy of ruthenium-Baicalein complex in colon cancer. Int J Biol Sci. 2019;15(5):1052-1071.
[[36]]
Zhou J, Wang LF, Wang JY, et al.Synthesis, characterization, antioxidative and antitumor activities of solid quercetin rare earth(III) complexes. J Inorg Biochem. 2001;83(1):41-48.
[[37]]
Jomová K, Hudecova L, Lauro P, et al.A switch between antioxidant and prooxidant properties of the phenolic compounds myricetin, Morin, 3',4'-dihydroxyflavone, taxifolin and 4-hydroxy-coumarin in the presence of copper(II) ions: a spectroscopic, absorption titration and DNA damage study. Molecules. 2019;24(23):4335.
[[38]]
Simunkova M, Barbierikova Z, Jomova K, et al.Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) Ions: a ROS-scavenging activity, fenton reaction and DNA damage study. Int J Mol Sci. 2021;22(4):1619.
[[39]]
Yan YY, Yuan S, Ma HH, et al.Structural modification and biological activities of carboxymethyl pachymaran. Food Sci Nutr. 2021;9(8):4335-4348.
[[40]]
Chen H, Wang D, Fan L, et al.Zinc complex of 3,5-di-tert-butyl salicylate inhibits viability, migration, and invasion in triple-negative breast cancer cells. Sci Rep. 2022;12(1):4545.
[[41]]
Wu R, Mei X, Ye Y, et al.Zn(II)-curcumin solid dispersion impairs hepatocellular carcinoma growth and enhances chemotherapy by modulating gut microbiota-mediated zinc homeostasis. Pharmacol Res. 2019;150:104454.
[[42]]
Li WF, Ma HH, Yuan S, et al.Production of pyracantha polysaccharide-iron(III) complex and its biologic activity. Molecules. 2021;26(7):1949.
[[43]]
Zeng P, Fang M, Zhao H, et al.A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer's disease mechanisms. Aging (Albany NY). 2021;13(14):18993-19012.
[[44]]
Zhao R, Wu X, Bi XY, et al.Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen Res. 2022;17(5):1080-1087.
[[45]]
Zhu T, Wang L, Feng Y, et al.Classical active ingredients and extracts of Chinese herbal medicines: pharmacokinetics, pharmacodynamics, and molecular mechanisms for ischemic stroke. Oxid Med Cell Longev. 2021;2021:8868941.
[[46]]
Wu M, Yu Z, Li X, et al.Paeonol for the treatment of atherosclerotic cardiovascular disease: a pharmacological and mechanistic overview. Front Cardiovasc Med. 2021;8:690116.
[[47]]
He S, Wu L, Li X, et al.Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021;11(8):2362-2395.
[[48]]
Du Y, Wan H, Huang P, et al.A critical review of Astragalus polysaccharides: from therapeutic mechanisms to pharmaceutics. Biomed Pharmacother. 2022;147:112654.
[[49]]
Lambrianidou A, Koutsougianni F, Papapostolou I, et al.Recent advances on the anticancer properties of Saffron(Crocus sativus L.) and its major constituents. Molecules. 2020;26(1):86.
[[50]]
Li Z, Ali I, Qiu J, et al.Eco-friendly and facile synthesis of antioxidant, antibacterial and anticancer dihydromyricetin-mediated silver nanoparticles. Int J Nanomedicine. 2021;16:481-492.
[[51]]
Wang L, Yin Q, Liu C, et al.Nanoformulations of ursolic acid: a modern natural anticancer molecule. Front Pharmacol. 2021;12:706121.
[[52]]
Szabo R, Bodolea C, Mocan T.Iron, copper, and zinc homeostasis: physiology, physiopathology, and nanomediated applications. Nanomaterials (Basel). 2021;11(11):2958.
[[53]]
Reddy NV, Li H, Hou T, et al.Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: characterization and evaluation of antibacterial, antioxidant, and anticancer activities. Int J Nanomedicine. 2021;16:15-29.
[[54]]
Ghosh P, Bag S, Parveen S, et al.Nanoencapsulation as a promising platform for the delivery of the morin-Cu(II) complex: antibacterial and anticancer potential. ACS Omega. 2022;7(9):7931-7944.
[[55]]
Leng X, Dong X, Wang W, et al.Biocompatible Fe-based micropore metal-organic frameworks as sustained-release anticancer drug carriers. Molecules. 2018;23(10):2490.
[[56]]
Karimi Alavijeh R, Akhbari K.Biocompatible MIL-101(Fe) as a smart carrier with high loading potential and sustained release of Curcumin. Inorg Chem. 2020;59(6):3570-3578.
[[57]]
Li H, Zhang Y, Liang L, et al.Doxorubicin-loaded metal-organic framework nanoparticles as acid-activatable hydroxyl radical nanogenerators for enhanced chemo/chemodynamic synergistic therapy. Materials (Basel). 2022;15(3):1096.
[[58]]
Li Z, Wu X, Wang W, et al.Fe(II) and tannic acid-cloaked MOF as carrier of artemisinin for supply of serrous ions to enhance treatment of triple-negative breast cancer. Nanoscale Res Lett. 2021;16(1):37.
[[59]]
Kuppusamy P, Yusoff MM, Maniam GP, et al.Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - an updated report. Saudi Pharm J. 2016;24(4):473-484.
[[60]]
Alphandéry E.Natural metallic nanoparticles for application in nano-oncology. Int J Mol Sci. 2020;21(12):4412.
[[61]]
Zhang D, Ma XL, Gu Y, et al.Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020;8:799.
[[62]]
Kemp JA, Kwon YJ.Cancer nanotechnology: current status and perspectives. Nano Converg. 2021;8(1):34.
[[63]]
Kaplan A.The nanocomposites designs of phytomolecules from medicinal and aromatic plants: promising anticancer-antiviral applications. Beni Suef Univ J Basic Appl Sci. 2022;11(1):17.
[[64]]
Chen X, Han W, Zhao X, et al.Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci Rep. 2019;9(1):6754.
[[65]]
Jiménez Pérez ZE, Mathiyalagan R, Markus J, et al.Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines. Int J Nanomedicine. 2017;12:709-723.
[[66]]
Xiong J, Jiang B, Luo Y, et al.Multifunctional nanoparticles encapsulating Astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. Int J Nanomedicine. 2020;15:4151-4169.
[[67]]
Alkhathlan AH, Al-Abdulkarim HA, Khan M, et al.Evaluation of the anticancer activity of phytomolecules conjugated gold nanoparticles synthesized by aqueous extracts of Zingiber officinale (Ginger) and Nigella sativa seeds (Black Cumin). Materials (Basel). 2021;14(12):3368.
[[68]]
Benedec D, Oniga I, Cuibus F, et al.Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. Int J Nanomedicine. 2018;13:1041-1058.
[[69]]
Singh P, Singh H, Ahn S, et al.Pharmacological importance, characterization and applications of gold and silver nanoparticles synthesized by Panax ginseng fresh leaves. Artif Cells Nanomed Biotechnol. 2017;45(7):1415-1424.
[[70]]
Wang J, Liu L, Sun XY, et al.Evidence and potential mechanism of action of Lithospermum erythrorhizon and its active components for psoriasis. Front Pharmacol. 2022;13:781850.
[[71]]
Shkryl Y, Rusapetova T, Yugay Y, et al.Biosynthesis and cytotoxic properties of Ag, Au, and bimetallic nanoparticles synthesized using Lithospermum erythrorhizon callus culture extract. Int J Mol Sci. 2021;22(17):9305.
[[72]]
Mohanta YK, Panda SK, Biswas K, et al.Biogenic synthesis of silver nanoparticles from Cassia fistula(Linn.): in vitro assessment of their antioxidant, antimicrobial and cytotoxic activities. IET Nanobiotechnol. 2016;10(6):438-444.
[[73]]
Xu Z, Feng Q, Wang M, et al.Green biosynthesized silver nanoparticles with aqueous extracts of Ginkgo biloba induce apoptosis via mitochondrial pathway in cervical cancer cells. Front Oncol. 2020;10:575415.
[[74]]
Erdogan O, Abbak M, Demirbolat GM, et al.Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One. 2019;14(6):e0216496.
[[75]]
Venkatesan J, Singh SK, Anil S, et al.Preparation, characterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating. Molecules. 2018;23(6):1429.
[[76]]
Ibrahim FY, El-Khateeb AY, Mohamed AH.Rhus and Safflower extracts as potential novel food antioxidant, anticancer, and antimicrobial agents using nanotechnology. Foods. 2019;8(4):139.
[[77]]
Ren S, Song L, Tian Y, et al.Emodin-conjugated PEGylation of Fe3O4 nanoparticles for FI/MRI dual-modal imaging and therapy in pancreatic cancer. Int J Nanomedicine. 2021;16:7463-7478.
[[78]]
Chen H, Wen J.Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur J Pharmacol. 2022;921:174860.
[[79]]
Rejinold NS, Han Y, Yoo J, et al.Evaluation of cell penetrating peptide coated Mn: ZnS nanoparticles for paclitaxel delivery to cancer cells. Sci Rep. 2018;8(1):1899.
[[80]]
Kundu M, Sadhukhan P, Ghosh N, et al.PH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res. 2019;18:161-172.
[[81]]
Zhang H, Wu Y, Xu X, et al.Synthesis characterization of platinum (IV) complex curcumin backboned polyprodrugs: in vitro drug release anticancer activity. Polymers (Basel). 2020;13(1):67.
[[82]]
Meng Y, Zhang Y, Jia N, et al.Synthesis and evaluation of a novel water-soluble high Se-enriched Astragalus polysaccharide nanoparticles. Int J Biol Macromol. 2018;118(Pt B):1438-1448.
[[83]]
Wu Y, Darland DC, Zhao JX.Nanozymes-hitting the biosensing “target”. Sensors (Basel). 2021;21(15):5201.
[[84]]
Benassi E, Fan H, Sun Q, et al.Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: the case of Rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Adv. 2021;3(8):2222-2235.
[[85]]
Xie Y, Fan H, Lu W, et al.Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38(16):2967-2983.
[[86]]
Nazarbek G, Kutzhanova A, Nurtay L, et al.Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing(Rhizoma polygonati) and Goji (Lycium chinense). Nanoscale Adv 2021;3(23):6728-6738.
[[87]]
Fan H, Sun Q, Dukenbayev K, et al.Carbon nanoparticles induce DNA repair and PARP inhibitor resistance associated with nanozyme activity in cancer cells. Cancer Nano. 2022;13(1):39.
[[88]]
Kamada R, Kudoh F, Ito S, et al.Metal-dependent Ser/Thr protein phosphatase PPM family: evolution, structures, diseases and inhibitors. Pharmacol Ther. 2020;215:107622.
[[89]]
Hu M, Ai X, Wang Z, et al.Nanoformulation of metal complexes: intelligent stimuli-responsive platforms for precision therapeutics. Nano Res. 2018;11(10):5474-5498.
[[90]]
Genchi G, Sinicropi MS, Lauria G, et al.The effects of cadmium toxicity. Int J Environ Res Public Health. 2020;17(11):3782.
[[91]]
Ścibior A, Pietrzyk L, Plewa Z, et al.Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. J Trace Elem Med Biol. 2020;61:126508.
[[92]]
Chen QY, DesMarais T, Costa M, Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537-554.
[[93]]
Chen QY, Murphy A, Sun H, et al.Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol. 2019;377:114636.
[[94]]
Scanlon SE, Scanlon CD, Hegan DC, et al.Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells. Carcinogenesis. 2017;38(6):627-637.
[[95]]
Morales M, Xue X.Targeting iron metabolism in cancer therapy. Theranostics. 2021;11(17):8412-8429.
[[96]]
Ying JF, Lu ZB, Fu LQ, et al.The role of iron homeostasis and iron-mediated ROS in cancer. Am J Cancer Res. 2021;11(5):1895-1912.
[[97]]
Costa MI, Lapa BS, Jorge J, et al.Zinc prevents DNA damage in normal cells but shows genotoxic and cytotoxic effects in acute myeloid leukemia cells. Int J Mol Sci. 2022;23(5):2567.
[[98]]
Prasad S, DuBourdieu D, Srivastava A, et al. Metal-curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094.
[[99]]
Liu WN, Shi J, Fu Y, et al.The stability and activity changes of apigenin and luteolin in human cervical cancer Hela cells in response to heat treatment and Fe2+/Cu2+ addition. Foods. 2019;8(8):346.
[[100]]
Mahmood Ansari S, Saquib Q, De Matteis V, et al.Marine macroalgae display bioreductant efficacy for fabricating metallic nanoparticles: intra/extracellular mechanism and potential biomedical applications. Bioinorg Chem Appl. 2021;2021:5985377.
[[101]]
Kejík Z, Kaplánek R, Masařík M, et al.Iron complexes of flavonoids-antioxidant capacity and beyond. Int J Mol Sci. 2021;22(2):646.
[[102]]
Yan C, Jin Y, Zhao C.Environment responsive metal-organic frameworks as drug delivery system for tumor therapy. Nanoscale Res Lett. 2021;16(1):140.
[[103]]
Micale N, Molonia MS, Citarella A, et al.Natural product-based hybrids as potential candidates for the treatment of cancer: focus on curcumin and resveratrol. Molecules. 2021;26(15):4665.
[[104]]
Tang D, Chen X, Kang R, et al.Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107-125.
[[105]]
Jiang X, Stockwell BR, Conrad M.Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282.
[[106]]
Wang HT, Ju J, Wang SC, et al.Insights into ferroptosis, a novel target for the therapy of cancer. Front Oncol. 2022;12:812534.
[[107]]
Xu T, Ding W, Ji X, et al.Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 2019;23(8):4900-4912.
[[108]]
Li J, Cao F, Yin HL, et al.Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88.
[[109]]
Stockwell BR, Jiang X, Gu W.Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 2020;30(6):478-490.
[[110]]
Chen X, Kang R, Kroemer G, et al.Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021;218(6):e20210518.
[[111]]
Hassannia B, Vandenabeele P, Vanden Berghe T.Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35(6):830-849.
[[112]]
Hu Y, Guo N, Yang T, et al.The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid Med Cell Longev. 2022;2022:1458143.
[[113]]
Gao M, Monian P, Pan Q, et al.Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021-1032.
[[114]]
Chen X, Yu C, Kang R, et al.Cellular degradation systems in ferroptosis. Cell Death Differ. 2021;28(4):1135-1148.
[[115]]
Hou W, Xie Y, Song X, et al.Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425-1428.
[[116]]
Chen GQ, Benthani FA, Wu J, et al.Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 2020;27(1):242-254.
[[117]]
Tsai Y, Xia C, Sun Z.The inhibitory effect of 6-Gingerol on ubiquitin-specific Peptidase 14 enhances autophagy-dependent ferroptosis and anti-tumor in vivo and in vitro. Front Pharmacol. 2020;11:598555.
[[118]]
Chen P, Wu Q, Feng J, et al.Erianin, a novel dibenzyl compound in dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther. 2020;5(1):51.
[[119]]
Huang S, Cao B, Zhang J, et al.Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell Death Dis. 2021;12(3):237.
[[120]]
Kong N, Chen X, Feng J, et al.Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm Sin B. 2021;11(12):4045-4054.
[[121]]
Guo Q, Li L, Hou S, et al.The role of iron in cancer progression. Front Oncol. 2021;11:778492.
[[122]]
Tsvetkov P, Coy S, Petrova B, et al.Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254-1261.
[[123]]
Wang Y, Zhang L, Zhou F.Cuproptosis: a new form of programmed cell death. Cell Mol Immunol. 2022;19(8):867-868.
[[124]]
Tang D, Chen X, Kroemer G.Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 2022;32(5):417-418.
[[125]]
Sun Q, He M, Zhang M, et al.Traditional Chinese medicine and colorectal cancer: implications for drug discovery. Front Pharmacol. 2021;12:685002.
[[126]]
Fnu G, Weber GF.Alterations of ion homeostasis in cancer metastasis: implications for treatment. Front Oncol. 2021;11:765329.
[[127]]
Zhang G, Cheng W, Du L, et al.Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J Nanobiotechnology. 2021;19(1):9.
[[128]]
Mukha I, Chepurna O, Vityuk N, et al.Multifunctional magneto-plasmonic Fe3O4/Au nanocomposites: approaching magnetophoretically-enhanced photothermal therapy. Nanomaterials (Basel). 2021;11(5):1113.
[[129]]
Sun X, Zhang Y, Li J, et al.Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol. 2021;16(11):1260-1270.
[[130]]
Zhang MK, Ye JJ, Li CX, et al.Cytomembrane-mediated transport of metal ions with biological specificity. Adv Sci (Weinh). 2019;6(17):1900835.
[[131]]
Chen D, Cai L, Guo Y, et al.Cancer cell membrane-decorated zeolitic-imidazolate frameworks codelivering cisplatin and oleanolic acid induce apoptosis and reversed multidrug resistance on bladder carcinoma cells. ACS Omega. 2020;5(2):995-1002.
[[132]]
Grabarska A, Wróblewska-Łuczka P, Kukula-Koch W, et al. Palmatine, a bioactive protoberberine alkaloid isolated from Berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules. 2021;26(20):6253.
[[133]]
Zeng D, Wang L, Tian L, et al.Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO2 nanosheets. Drug Deliv. 2019;26(1):661-672.
[[134]]
Tan BL, Norhaizan ME.Curcumin combination chemotherapy: the implication and efficacy in cancer. Molecules. 2019;24(14):2527.
[[135]]
Zheng T, Wang W, Wu F, et al.Zwitterionic polymer-gated Au@TiO2 core-shell nanoparticles for imaging-guided combined cancer therapy. Theranostics. 2019;9(17):5035-5048.
[[136]]
Gao L, Teng R, Zhang S, et al.Zinc ion-stabilized aptamer-targeted black phosphorus nanosheets for enhanced photothermal/chemotherapy against prostate cancer. Front Bioeng Biotechnol. 2020;8:769.
[[137]]
Coughlin AJ, Ananta JS, Deng N, et al.Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small. 2014;10(3):556-565.
[[138]]
Xi J, Da L, Yang C, et al.Mn2+-coordinated PDA@DOX/PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int J Nanomedicine. 2017;12:3331-3345.
[[139]]
Wu K, Zhao H, Sun Z, et al.Endogenous oxygen generating multifunctional theranostic nanoplatform for enhanced photodynamic-photothermal therapy and multimodal imaging. Theranostics. 2019;9(25):7697-7713.
[[140]]
Yu Z, He Y, Schomann T, et al.Achieving effective multimodal imaging with rare-earth ion-doped CaF2 nanoparticles. Pharmaceutics. 2022;14(4):840.
[[141]]
Chen F, Li Y, Lin X, et al.Polymeric systems containing supramolecular coordination complexes for drug delivery. Polymers (Basel). 2021;13(3):370.
[[142]]
Fu S, Li G, Zang W, et al.Pure drug nano-assemblies: a facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B. 2022;12(1):92-106.
[[143]]
Shao J, Fang Y, Zhao R, et al.Evolution from small molecule to nano-drug delivery systems: an emerging approach for cancer therapy of ursolic acid. Asian J Pharm Sci. 2020;15(6):685-700.
[[144]]
Kazybay B, Sun Q, Dukenbayev K, et al.Network pharmacology with experimental investigation of the mechanisms of Rhizoma polygonati against prostate cancer with additional herbzymatic activity. ACS Omega. 2022;7(17):14465-14477.
[[145]]
Xie Y, Mu C, Kazybay B, et al.Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv. 2021;28(1):2187-2197.
[[146]]
Xie Y, Filchakova O, Yang Q, et al.Inhibition of cancer cell proliferation by carbon dots derived from date pits at low dose. Chem Select. 2017;2:4079-4083.
[[147]]
Xie Y, Sun Q, Nurkesh AA, et al.Dysregulation of YAP by ARF stimulated with tea-derived carbon nanodots. Sci Rep. 2017;7:16577.
[[148]]
Kang W, Lee A, Tae Y, et al.Enhancing catalytic efficiency of carbon dots by modulating their Mn doping and chemical structure with metal salts. RSC Adv. 2023;13(13):8996-9002.
[[149]]
Pechlivanidou M, Ninou E, Karagiorgou K, et al.Autoimmunity to neuronal nicotinic acetylcholine receptors. Pharmacol Res. 2023;192:106790.
[[150]]
Terry AV Jr, Jones K, Bertrand D.Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res. 2023;191:106764.
[[151]]
Wyllie DJA, Bowie D.Ionotropic glutamate receptors: structure, function and dysfunction. J Physiol. 2022;600(2):175-179.
[[152]]
Seo JS, Svenningsson P.Modulation of ion channels and receptors by p11 (S100A10). Trends Pharmacol Sci. 2020;41(7):487-497.
[[153]]
Chen CC, Krogsaeter E, Kuo CY, et al.Endolysosomal cation channels point the way towards precision medicine of cancer and infectious diseases. Biomed Pharmacother. 2022;148:112751.
[[154]]
Fiorio Pla A, Gkika D.Ca2+ channel toolkit in neuroendocrine tumors. Neuroendocrinology. 2020;110(1-2):147-154.
[[155]]
Cao B, Wang J, Feng J.Signaling pathway mechanisms of neurological diseases induced by G protein-coupled receptor 39. CNS Neurosci Ther. 2023;29(6):1470-1483.
[[156]]
Gottesman-Katz L, Latorre R, Vanner S, et al.Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system. Gut. 2021;70(5):970-981.
[[157]]
Kong D, Wan Q, Li J, et al.DP1 activation reverses age-related hypertension via NEDD4L-mediated T-Bet degradation in T cells. Circulation. 2020;141(8):655-666.

RIGHTS & PERMISSIONS

2023 Acupuncture and Herbal Medicine
PDF(1088 KB)

Accesses

Citations

Detail

Sections
Recommended

/