The role of phytoandrogens for benign prostatic hyperplasia treatment

Yaoxin Wu, Nuttapong Wichai, Xiaohua Yang, Yaxuan Ma, Tongchuan Suo, Lin Miao

PDF(564 KB)
PDF(564 KB)
Acupuncture and Herbal Medicine ›› 2023, Vol. 3 ›› Issue (1) : 28-37. DOI: 10.1097/HM9.0000000000000055
Review Articles
Review Articles

The role of phytoandrogens for benign prostatic hyperplasia treatment

Author information +
History +

Abstract

Benign prostatic hyperplasia (BPH) is a common urological condition in aging men. High levels of androgens, including testosterone (T) and dihydrotestosterone (DHT), are closely associated with BPH occurrence and development. Currently, the main clinical drugs used for BPH treatment are 5α-reductase inhibitors and α-receptor blockers, both of which aim to decrease abnormal androgenic signaling while having several unignored side effects. Recently, various natural herbs, such as tonifying yang traditional Chinese medicine (TCM), have been found to have androgenic activities, some of which are also effective for BPH treatment. Here, we review the androgenic activities of phytoandrogens, together with their therapeutic effects in BPH, and summarize the mechanisms involved, providing evidence that such herbs serve as selective androgen receptor modulators.

Keywords

Androgen / Benign prostatic hyperplasia / Phytoandrogens / Selective androgen receptor modulators / Traditional Chinese medicine

Cite this article

Download citation ▾
Yaoxin Wu, Nuttapong Wichai, Xiaohua Yang, Yaxuan Ma, Tongchuan Suo, Lin Miao. The role of phytoandrogens for benign prostatic hyperplasia treatment. Acupuncture and Herbal Medicine, 2023, 3(1): 28‒37 https://doi.org/10.1097/HM9.0000000000000055

References

[[1]]
Mobley D, Feibus A, Baum N. Benign prostatic hyperplasia and urinary symptoms: evaluation and treatment. Postgrad Med 2015;127(3):301-307.
[[2]]
Roehrborn CG. Male lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). Med Clin North Am 2011;95(1):87-100.
[[3]]
Morgentaler A, Traish AM. The history of testosterone and the evolution of its therapeutic potential. Sex Med Rev 2018;S2050-521(18):30040-30044.
[[4]]
Burger HG. Androgen production in women. Fertil Steril 2002;77(4):S3-S5.
[[5]]
Hoberman JM, Yesalis CE. The history of synthetic testosterone. Sci Am 1995;272(2):76-81.
[[6]]
Longo D, Fauci A, Kasper D, et al. Harrison's Principles of Internal Medicine. 18th ed. United States: McGraw-Hill Professional; 2011.
[[7]]
Meinhardt U, Mullis PE. The essential role of the aromatase/ p450arom. Semin Reprod Med 2002;20(3):277-284.
[[8]]
Laurent MR, Hammond GL, Blokland M, et al. Sex hormone- binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis. Sci Rep 2016;6:35539.
[[9]]
Swerdloff RS, Dudley RE, Page ST, et al. Dihydrotestosterone: biochemistry, physiology, and clinical implications of elevated blood levels. Endocr Rev 2017;38(3):220-254.
[[10]]
Lakshman KM, Kaplan B, Travison TG, et al. The effects of injected testosterone dose and age on the conversion of testosterone to estradiol and dihydrotestosterone in young and older men. J Clin Endocrinol Metab 2010;95(8):3955-3964.
[[11]]
Hammes A, Andreassen TK, Spoelgen R, et al. Role of endocytosis in cellular uptake of sex steroids. Cell 2005;122(5):751-762.
[[12]]
Ghosh D, Egbuta C, Lo J. Testosterone complex and non-steroidal ligands of human aromatase. J Steroid Biochem Mol Biol 2018;181:11-19.
[[13]]
Levine AC, Kirschenbaum A, Gabrilove JL. The role of sex steroids in the pathogenesis and maintenance of benign prostatic hyperplasia. Mt Sinai J Med 1997;64(1):20-25.
[[14]]
Nuclear Receptors Nomenclature C. A unified nomenclature system for the nuclear receptor superfamily. Cell 1999;97(2):161-163.
[[15]]
Prescott J, Coetzee GA. Molecular chaperones throughout the life cycle of the androgen receptor. Cancer Lett 2006;231(1):12-19.
[[16]]
Germain PB, Staels B, Dacquet C, et al. Overview of nomenclature of nuclear receptors. Pharmacol Rev 2006;58(4):685-704.
[[17]]
Gelmann EP. Molecular biology of the androgen receptor. J Clin Oncol 2002;20(13):3001-3015.
[[18]]
Jenster G, van der Korput JA, Trapman J, et al. Functional domains of the human androgen receptor. J Steroid Biochem Mol Biol 1992;41(3-8):671-675.
[[19]]
Tan MH, Li J, Xu HE, et al. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol Sin 2014;36(1):3-23.
[[20]]
Lubahn DB, Joseph DR, Sar M, et al. The human androgen receptor: complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol Endocrinol 1988;2(12):1265-1275.
[[21]]
van Laar JH, Bolt-de Vries J, Zegers ND, et al. Androgen receptor heterogeneity and phosphorylation in human LNCaP cells. Biolchem Biophys Res Commun 1990;166(1):193-200.
[[22]]
Lallous N, Dalal K, Cherkasov A, et al. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013;14(6):12496-12519.
[[23]]
Jenster G, van der Korput HA, Trapman J, et al. Identification of two transcription activation units in the N-terminal domain of the human androgen receptor [J].J Biol Chem 1995;270(13):7341-7346.
[[24]]
Reid J, Murray I, Watt K, et al. The androgen receptor interacts with multiple regions of the large subunit of general transcription factor TFIIF. J Biol Chem 2002;277(43):41247-41253.
[[25]]
Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 1989;57(7):1139-1146.
[[26]]
Clinckemalie L, Vanderschueren D, Boonen S, et al. The hinge region in androgen receptor control. Mol Cell Endocrinol 2012;358(1):1-8.
[[27]]
Jenster G, Trapman J, Brinkmann AO. Nuclear import of the human androgen receptor. Biochem J 1993;293(Pt3):761-768.
[[28]]
Zhou XE, Suino-Powell KM, Li J, et al. Identification of SRC3/ AIB1 as a preferred coactivator for hormone-activated androgen receptor. J Biol Chem 2010;285(12):9161-9171.
[[29]]
He B, Kemppainen JA, Voegel JJ, et al. Activation function 2 in the human androgen receptor ligand binding domain mediates interdomain communication with the NH(2)-terminal domain. J Biol Chem 1999;274(52):37219-37225.
[[30]]
He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000;275(30):22986-22994.
[[31]]
Eichholz A, Ferraldeschi R, Attard G, et al. Putting the brakes on continued androgen receptor signaling in castration-resistant prostate cancer. Mol Cell Endocrinol 2012;360(1-2):68-75.
[[32]]
Centenera MM, Fitzpatrick AK, Tilley WD, et al. Hsp90: still a viable target in prostate cancer. Biochim Biophys Acta 2013;835(2):211-218.
[[33]]
Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 2000;14(20):2551-2569.
[[34]]
Dilworth FJ, Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 2001;20(24):3047-3054.
[[35]]
Hager G. Understanding nuclear receptor function: from DNA to chromatin to the inter phase nucleus. Prog Nucleic Acid Res Mol Biol 2001;66:279-305.
[[36]]
Huang ZQ, Li J, Sachs LM, et al. A role for cofactor-cofactor and cofactorhistone interactions in targeting p300, SWI/SNF and mediator for transcription. EMBO J 2003;22(9):2146-2155.
[[37]]
Kellokumpu-Lehtinen P, Santti R, Pelliniemi LJ. Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anat Rec 1980;196(3):263-273.
[[38]]
Schauer IG, Rowley DR. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 2011;82(4-5):200-210.
[[39]]
Cao N, Lu Q, Si J, et al. The Characteristics of the transitional zone in prostate growth with age. Urology 2017;105:136-140.
[[40]]
Vignozzi L, Gacci M, Maggi M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol 2016;13(2):108-119.
[[41]]
Zhao Q, Li HS, Dai HH, et al. Clinical research on treatment of benign prostatic hyperplasia with traditional Chinese medicine: a review. Chin J Experiment Tradit Med Formul 2022;28(2):236-241.
[[42]]
Wang YW, Guo FX, Yang RC, et al. Clinical application analysis of data mining-based traditional Chinese medicine therapy for benign prostatic hyperplasia. Chin J Androl 2022;36(2):28-38.
[[43]]
Berry SJ, Coffey DS, Walsh PC, et al. The development of human benign prostatic hyperplasia with age. J Urol 1984;132(3):474-479.
[[44]]
Suzuki K, Inaba S, Takeuchi H, et al. Endocrine environment of benign prostatic hyperplasia—relationships of sex steroid hormone levels with age and the size of the prostate. Nihon Hinyokika Gakkai Zasshi 1992;83(5):664-671.
[[45]]
Rastrelli G, Vignozzi L, Corona G, et al. Testosterone and benign prostatic hyperplasia. Sex Med Rev 2019;7(2):259-271.
[[46]]
Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res 2008;20(Suppl 3):S11-S18.
[[47]]
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011;82(4-5):184-199.
[[48]]
Vignozzi L, Rastrelli G, Corona G, et al. Benign prostatic hyperplasia: a new metabolic disease? J Endocrinol Invest 2014;37(4):313-322.
[[49]]
Morgentaler A, Traish AM. Shifting the paradigm of testosterone and prostate cancer: the saturation model and the limits of androgen- dependent growth. Eur Urol 2009;55(2):310-320.
[[50]]
Cunha GR, Chung LW. Stromal-epithelial interactions--I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J Steroid Biochem 1981;14(12):1317-1324.
[[51]]
Miernik A, Gratzke C. Current treatment for benign prostatic hyperplasia. Dtsch Arztebl Int 2020;117(49):843-854.
[[52]]
Uckert S, Kedia GT, Tsikas D, et al. Emerging drugs to target lower urinary tract symptomatology (LUTS)/benign prostatic hyperplasia (BPH): focus on the prostate. World J Urol 2019;38:1423-1435.
[[53]]
Najbar-Kaszkiel AT, Di Iulio JL, Li CG, et al. Characterisation of excitatory and inhibitory transmitter systems in prostate glands of rats, guinea pigs, rabbits and pigs. Eur J Pharmacol 1997;337(2-3):251-258.
[[54]]
Takeda M, Tang R, Shapiro E, et al. Effects of nitric oxide on human and canine prostates. Urology 1995;45(3):440-446.
[[55]]
Bodanszky M, Sharaf H, Roy JB, et al. Contractile activity of vasotocin, oxytocin, and vasopressin on mammalian prostate. Eur J Pharmacol 1992;216(2):311-313.
[[56]]
Palea S, Corsi M, Artibani W, et al. Pharmacological characterization of tachykinin NK2 receptors on isolated human urinary bladder, prostatic urethra and prostate. J Pharmacol Exp Ther 1996;277(2):700-705.
[[57]]
Marberger M, Chartier-Kastler E, Egerdie B, et al. A randomized double-blind placebo-controlled phase 2 dose-ranging study of onabotulinumtoxinA in men with benign prostatic hyperplasia. Eur Urol 2013;63(3):496-503.
[[58]]
Shim SR, Cho YJ, Shin I-S, et al. Efficacy and safety of botulinum toxin injection for benign prostatic hyperplasia: a systematic review and meta-analysis. Int Urol Nephrol 2016;48(1):19-30.
[[59]]
Sacco E, Bientinesi R, Marangi F, et al. Patient-reported outcomes in men with lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH) treated with intraprostatic OnabotulinumtoxinA: 3-month results of a prospective single- armed cohort study. BJU Int 2012;110(11 Pt C):E837-E844.
[[60]]
Shore N. NX-1207: a novel investigational drug for the treatment of benign prostatic hyperplasia. Expert Opin Investig Drugs 2010;19(2):305-310.
[[61]]
Shore N, Cowan B. The potential for NX-1207 in benign prostatic hyperplasia: an update for clinicians. Ther Adv Chronic Dis 2011;2(6):377-383.
[[62]]
Siejka A, Schally AV, Block NL, et al. Mechanisms of inhibition of human benign prostatic hyperplasia in vitro by the luteinizing hormone-releasing hormone antagonist cetrorelix. BJU International 2010;106(9):1382-1388.
[[63]]
Debruyne F, Tzvetkov M, Altarac S, et al. Dose-ranging study of the luteinizing hormone-releasing hormone receptor antagonist cetrorelix pamoate in the treatment of patients with symptomatic benign prostatic hyperplasia. Urology 2010;76(4):927-933.
[[64]]
Rick FG, Schally AV, Block NL, et al. LHRH antagonist Cetrorelix reduces prostate size and gene expression of proinflammatory cytokines and growth factors in a rat model of benign prostatic hyperplasia. Prostate 2011;71(7):736-747.
[[65]]
Edouard MJ, Miao L, Fan GW. Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Reviews In Urology 2005;7(Suppl 7):S21-S26.
[[66]]
Collins JJ. Phytotherapeutic management of endocrine dysfunctions. Nutrinews 2006. 8(1):1-8 [50].
[[67]]
Edouard M, et al. Yang-tonifying traditional Chinese medicinal plants and their potential phytoandrogenic activity. Chin J Nat Med 2014;12(5):321-334.
[[68]]
Ong V, Tan B. Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides. BMC Complement Altern Med 2007;7:3.
[[69]]
Han Y, Huang W, Liu J, et al. Triptolide inhibits the AR signaling pathway to suppress the proliferation of enzalutamide resistant prostate cancer cells. Theranostics 2017;7(7):1914-1927.
[[70]]
Miura Y, Oyama M, Iguchi K, et al. Anti-androgenic activity of Icarisid II from epimedium herb in prostate cancer LNCaP cells. J Nutr Sci Vitaminol (Tokyo) 2015;61(2):201-204.
[[71]]
Xu DF, Chen Q, Liu Y, et al. Baicalein suppresses the androgen receptor (AR)-mediated prostate cancer progression via inhibiting the AR N-C dimerization and AR-coactivators interaction. Oncotarget 2017;8(62):105561-105573.
[[72]]
Xu DF, Lin T-H, Li S, et al. Cryptotanshinone suppresses androgen receptor-mediated growth in androgen dependent and castration resistant prostate cancer cells. Cancer Lett 2012;316(1):11-22.
[[73]]
Zhang Y, Won S-H, Jiang C, et al. Tanshinones from Chinese medicinal herb Danshen (Salvia miltiorrhiza Bunge) suppress prostate cancer growth and androgen receptor signaling. Pharm Res 2012;29(6):1595-1608.
[[74]]
Fujita R, Liu J, Shimizu K, et al. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol 2005;102(1):107-112.
[[75]]
Liao S, Hiipakka RA. Selective inhibition of steroid 5 alpha-reductase isozymes by tea epicatechin-3-gallate and epigallocatechin-3-gallate. Biochem Biophys Res Commun 1995;214(3):833-838.
[[76]]
Takeuchi T, Nishii O, Okamura T, et al. Effect of paeoniflorin, glycyrrhizin and glycyrrhetic acid on ovarian androgen production. Am J Chin Med 1991;19(1):73-78.
[[77]]
Riggs BL, Hartmann LC. Selective estrogen-receptor modulators— mechanisms of action and application to clinical practice. N Engl J Med 2003;348(7):618-629.
[[78]]
Kumar R, Verma V, Sarswat A, et al. Selective estrogen receptor modulators regulate stromal proliferation in human benign prostatic hyperplasia by multiple beneficial mechanisms—action of two new agents. Invest New Drugs 2012;30(2):582-593.
[[79]]
Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev 2005;105(9):3352-3370.
[[80]]
Miller CP, Shomali M, Lyttle CR, et al. Design, synthesis, and preclinical characterization of the Selective Androgen Receptor Modulator (SARM) RAD140. ACS Med Chem Lett 2011;2(2):124-129.
[[81]]
Nejishima H, Yamamoto N, Suzuki M, et al. Anti-androgenic effects of S-40542, a novel non-steroidal selective androgen receptor modulator (SARM) for the treatment of benign prostatic hyperplasia. Prostate 2012;72(14):1580-1587.
[[82]]
Gao W, Kearbey JD, Nair VA, et al. Comparison of the pharmacological effects of a novel selective androgen receptor modulator, the 5alpha-reductase inhibitor finasteride, and the antiandrogen hydroxyflutamide in intact rats: new approach for benign prostate hyperplasia. Endocrinology 2004;145(12):5420-5428.
[[83]]
Kim A-R, Kim S-N, Jung I-K, et al. The inhibitory effect of Scutellaria baicalensis extract and its active compound, baicalin, on the translocation of the androgen receptor with implications for preventing androgenetic alopecia. Planta Med 2014;80(2-3):153-158.
[[84]]
Krishnan V, Heath H, Bryant HU. Mechanism of action of estrogens and selective estrogen receptor modulators. Vitam Horm 2000;60:123-147.
[[85]]
Safe S, Papineni S. The role of xenoestrogenic compounds in the development of breast cancer. Trends Pharmacol Sci 2006;27(8):447-454.
[[86]]
Safe SH, Pallaroni L, Yoon K, et al. Problems for risk assessment of endocrine-active estrogenic compounds. Environ Health Perspect 2002;110(Suppl 6):925-929.
[[87]]
Zhang YX, Ye YH. Chinese Materia Medica. Beijing, China: China Medical Science Press; 2020.
[[88]]
Meng HC, Wang S, Li Y, et al. Chemical constituents and pharmacologic actions of Cynomorium plants. Chin J Nat Med 2013;11(4):321-329.
[[89]]
Cui Z, Guo Z, Miao J, et al. The genus Cynomorium in China: an ethnopharmacological and phytochemical review. J Ethnopharmacol 2013;147(1):1-15.
[[90]]
Wang X, Tao R, Yang J, et al. Compounds from Cynomorium songaricum with estrogenic and androgenic activities suppress the oestrogen/androgen-induced BPH Process. Evid Based Complement Alternat Med 2017;6438013.
[[91]]
Abdel-Magied EM, Abdel-Rahman HA, Harraz FM. The effect of aqueous extracts of Cynomorium coccineum and Withania somnifera on testicular development in immature Wistar rats. J Ethnopharmacol 2001;75(1):1-4.
[[92]]
Tao R, Miao L, Yu X, et al. Cynomorium songaricum Rupr demonstrates phytoestrogenic or phytoandrogenic like activities that attenuates benign prostatic hyperplasia via regulating steroid 5-α-reductase. J Ethnopharmacol 2019;235:65-74.
[[93]]
Ren Y, Song X, Tan L, et al. A review of the pharmacological properties of psoralen. Front Pharmacol 2020;11:571535.
[[94]]
Miao L, Ma SW, Fan GW, et al. Bakuchiol inhibits the androgen induced-proliferation of prostate cancer cell line LNCaP through suppression of AR transcription activity. Tianjin J Tradit Chin Med 2013;30(5):291-293.
[[95]]
Miao L, Jiao C, Shao R, et al. Bakuchiol suppresses oestrogen/ testosterone-induced benign prostatic hyperplasia development through up-regulation of epithelial estrogen receptor β and down-regulation of stromal aromatase. Toxicol Appl Pharmacol 2019;381:114637.
[[96]]
Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci 2001;16(Suppl):S3-S5.
[[97]]
Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39(4):287-298.
[[98]]
Cao B, Liu X, Li J, et al. 20(S)-protopanaxadiol-aglycone downregulation of the full-length and splice variants of androgen receptor. Int J Cancer 2013;132(6):1277-1287.
[[99]]
Ben-Eltriki M, Deb S, Hassona M, et al. 20(S)-protopanaxadiol regio-selectively targets androgen receptor: anticancer effects in castration-resistant prostate tumors. Oncotarget 2018;9(30):20965-20978.
[[100]]
Bae JS, Park H-S, Park J-W, et al. Red ginseng and 20(S)-Rg3 control testosterone-induced prostate hyperplasia by deregulating androgen receptor signaling. J Nat Med 2012;66(3):476-485.
[[101]]
Lee JY, Kim S, Kim S, et al. Effects of red ginseng oil(KGC11o) on testosterone-propionateinduced benign prostatic hyperplasia. Ginseng Res 2022;46:473-480.
[[102]]
Zhao T, Tang H, Xie L, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharm Pharmacol 2019;71(9):1353-1369.
[[103]]
Bonham M, Posakony J, Coleman I, et al. Characterization of chemical constituents in Scutellaria baicalensis with antiandrogenic and growth-inhibitory activities toward prostate carcinoma. Clin Cancer Res 2005;11(10):3905-3914.
[[104]]
Chen S, Gao J, Halicka HD, et al. Down-regulation of androgen-receptor and PSA by phytochemicals. Int J Oncol 2008;32(2):405-411.
[[105]]
Jin BR, An HJ. Baicalin alleviates benign prostate hyperplasia through androgen-dependent apoptosis. Aging (Albany NY) 2020;12(3):2142-2155.
[[106]]
Su C, Ming Q-L, Rahman K, et al. Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 2015;13(3):163-182.
[[107]]
Wu BY, Liu CT, Sun MF, et al. Tanshinone IIA inhibits the growth of LNCaP cells by blocking the transcriptional activity of androgen receptor. Chin Med 2014;25(2):155-165.
[[108]]
Ketola K, Viitala M, Kohonen P, et al. High-throughput cellbased compound screen identifies pinosylvin methyl ether and tanshinone IIA as inhibitors of castration-resistant prostate cancer. J Mol Biochem 2016;5(1):12-22.
[[109]]
Liu W, Zhou J, Geng G, et al. Antiandrogenic, maspin induction, and antiprostate cancer activities of tanshinone IIA and its novel derivatives with modification in ring A. J Med Chem 2012;55(2):971-975.
[[110]]
Csikos E, Horvath A, Acs K, et al. Treatment of benign prostatic hyperplasia by natural drugs. Molecules 2021;26(23):7141.
[[111]]
Vahlensieck W, Fabricius PG, Hell U. Drug therapy of benign prostatic hyperplasia. Fortschritte Der Medizin 1996;114(31):407-411.
[[112]]
Gossell-Williams M, Davis A, O’Connor N. Inhibition of testosterone-induced hyperplasia of the prostate of Sprague-Dawley rats by pumpkin seed oil. J Med Food 2006;9(2):284-286.
[[113]]
Tsai Y-S, Tong Y-C, Cheng J-T, et al. Pumpkin seed oil and phytosterol- F can block testosterone/prazosin-induced prostate growth in rats. Urol Int 2006;77(3):269-274.
[[114]]
Kang XC, Chen T, Zhou JL, et al. Phytosterols in hull-less pumpkin seed oil, rich in Δ-phytosterols, ameliorate benign prostatic hyperplasia by lowing 5α-reductase and regulating balance between cell proliferation and apoptosis in rats. Food Nutr Res 2021;65. doi: 10.29219/fnr.v65.7537.
[[115]]
Granica S, Piwowarski JP, Czerwińska ME, et al. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): a review. J Ethnopharmacol 2014;156:316-346.
[[116]]
Vitalone A, Allkanjari O. Epilobium spp: pharmacology and phytochemistry. Phytotherapy Res 2018;32(7):1229-1240.
[[117]]
Hiermann A, Bucar F. Studies of Epilobium angustifolium extracts on growth of accessory sexual organs in rats. J Ethnopharmacol 1997;55(3):179-183.
[[118]]
Perez LY, Menendez R, Ma R, et al. In vitro effect of D-004, a lipid extract of the fruit of the cuban royal palm (Roystonea regia), on prostate steroid 5α-reductase activity. Curr Ther Res Clin Exp 2006;67(6):396-405.
[[119]]
Schleich S, Papaioannou M, Baniahmad A, et al. Extracts from Pygeum africanum and other ethnobotanical species with antiandrogenic activity. Planta Med 2006;72(9):807-813.
[[120]]
Papaioannou M, Schleich S, Prade I, et al. The natural compound atraric acid is an antagonist of the human androgen receptor inhibiting cellular invasiveness and prostate cancer cell growth. J Cell Mol Med 2009;13(8B):2210-2223.
[[121]]
European Union herbal monograph on Serenoa repens (W.B artram) small, fructus, Available from: www.ema.europa.eu/en/documents/herbal-monograph/final-european-union-herbal-monograph-serenoa-repens-w-bartram-small-fructus_en.pdf. E.M. Agency. 2015.
[[122]]
Buck AC. Is there a scientific basis for the therapeutic effects of Serenoa repens in benign prostatic hyperplasia? Mechanisms of action. J Urol 2004;172(5 Pt 1):1792-1799.
[[123]]
Raynaud JP, Cousse H, Martin PM. Inhibition of type 1 and type 2 5alpha-reductase activity by free fatty acids, active ingredients of Permixon. J Steroid Biochem Mol Biol 2002;82(2-3):233-239.
[[124]]
Wang Y-R, Xu Y, Jiang Z-Z, et al. Triptolide reduces prostate size and androgen level on testosterone-induced benign prostatic hyperplasia in Sprague Dawley rats. Chin J Natural Med 2017;15(5):341-346.

RIGHTS & PERMISSIONS

2023 Acupuncture and Herbal Medicine
PDF(564 KB)

Accesses

Citations

Detail

Sections
Recommended

/