Natural products against HIV latency
Kouharu Otsuki, Mi Zhang, Wei Li
Natural products against HIV latency
Antiretroviral therapy has achieved great success in suppressing human immunodeficiency virus (HIV) replication and transforming HIV infection from a fatal disease to a manageable chronic disease. However, the latent HIV reservoir persists in the body of HIV-infected individuals and is prone to reactivation. Therefore, the development of new treatment methods aimed at a complete cure for HIV is needed. The leading strategy for HIV eradication is based on eliminating and preventing the reactivation of latent reservoirs through an approach known as “shock and kill.” This strategy involves the use of latency-reversing agents (LRAs) to activate the HIV provirus in latent viral reservoir cells. Many LRAs can be obtained from natural resources, including plants and marine organisms. In this review, we provide an overview of natural products used to eliminate HIV latency.
Diterpenoid / Human immunodeficiency virus / Human immunodeficiency virus latency / Shock and kill / Thymelaeaceae
[[1]] |
Global HIV & AIDS Statistics - 2020 Fact Sheet. UNAIDS. Available from:
|
[[2]] |
Okoye AA, Picker LJ. CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure.Immunol Rev 2013;254(1):54-64.
|
[[3]] |
Coffin JM, Hughes SH, Varmus HE. Retroviruses. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997.
|
[[4]] |
Coiras M, López-Huertas MR, Pérez-Olmeda M, et al.Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs.Nat Rev Microbiol 2009;7(11):798-812.
|
[[5]] |
Haseltine WA.Molecular biology of the human immunodeficiency virus type 1.FASEB J 1991;5(10):2349-2360.
|
[[6]] |
Sued O, Figueroa MI, Cahn P.Clinical challenges in HIV/AIDS: Hints for advancing prevention and patient management strategies.Adv Drug Deliv Rev 2016;103:5-19.
|
[[7]] |
Mehellou Y, De Clercq E.Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? J Med Chem 2010;53(2):521-538.
|
[[8]] |
Maeda K, Das D, Kobayakawa T, et al.Discovery and development of anti-HIV therapeutic agents: progress towards improved HIV medication.Curr Top Med Chem 2019;19(18):1621-1649.
|
[[9]] |
Back D, Marzolini C.The challenge of HIV treatment in an era of polypharmacy.J Int AIDS Soc 2020;23(2):e25449.
|
[[10]] |
Anti-HIV Treatment Guidelines. AIDS MEDICAL CENTER. . Available from:
|
[[11]] |
Bartlett JA, Fath MJ, Demasi R, et al.An updated systematic overview of triple combination therapy in antiretroviral-naive HIV-infected adults.AIDS 2006;20(16):2051-2064.
|
[[12]] |
Bartlett JA, DeMasi R, Quinn J, et al.Overview of the effectiveness of triple combination therapy in antiretroviral-naive HIV-1 infected adults.AIDS 2001;15(11):1369-1377.
|
[[13]] |
Siliciano JD, Kajdas J, Finzi D, et al.Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells.Nat Med 2003;9(6):727-728.
|
[[14]] |
Siliciano RF, Greene WC.HIV latency.Cold Spring Harb Perspect Med 2011;1(1):a007096.
|
[[15]] |
Margolis DM, Garcia JV, Hazuda DJ, et al. Latency reversal and viral clearance to cure HIV-1. Science 2016;353(6297):aaf6517.
|
[[16]] |
Marsden MD, Zack JA.HIV/AIDS eradication.Bioorg Med Chem Lett 2013;23(14):4003-4010.
|
[[17]] |
Dahabieh MS, Battivelli E, Verdin E.Understanding HIV latency: the road to an HIV cure.Annu Rev Med 2015;66:407-421.
|
[[18]] |
Barton KM, Burch BD, Soriano-Sarabia N, et al.Prospects for treatment of latent HIV.Clin Pharmacol Ther 2013;93(1):46-56.
|
[[19]] |
Sadowski I, Hashemi FB.Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs.Cell Mol Life Sci 2019;76(18):3583-3600.
|
[[20]] |
Chomont N, El-Far M, Ancuta P, et al.HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation.Nat Med 2009;15(8):893-900.
|
[[21]] |
Mbonye U, Karn J.The molecular basis for human immunodeficiency virus latency.Annu Rev Virol 2017;4(1):261-285.
|
[[22]] |
Ruelas DS, Greene WC.An integrated overview of HIV-1 latency.Cell 2013;155(3):519-529.
|
[[23]] |
Tebas P, Stein D, Tang WW, et al.Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.N Engl J Med 2014;370(10):901-910.
|
[[24]] |
Chapuis AG, Paolo Rizzardi G, D’Agostino C, et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo.Nat Med 2000;6(7):762-768.
|
[[25]] |
Caskey M, Klein F, Lorenzi JC, et al.Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117.Nature 2015;522(7557):487-491.
|
[[26]] |
Thorlund K, Horwitz MS, Fife BT, et al.Landscape review of current HIV ’kick and kill’ cure research-some kicking, not enough killing.BMC Infect Dis 2017;17(1):595.
|
[[27]] |
Deeks SG.HIV: Shock and kill.Nature 2012;487(7408):439-440.
|
[[28]] |
Vansant G, Bruggemans A, Janssens J, et al.Block-and-lock strategies to cure HIV infection.Viruses 2020;12(1):84.
|
[[29]] |
Kim Y, Anderson JL, Lewin SR.Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV.Cell Host Microbe 2018;23(1):14-26.
|
[[30]] |
Archin NM, Sung JM, Garrido C, et al.Eradicating HIV-1 infection: seeking to clear a persistent pathogen.Nat Rev Microbiol 2014;12(11):750-764.
|
[[31]] |
Margolis DM, Archin NM, Cohen MS, et al.Curing HIV: seeking to target and clear persistent infection.Cell 2020;181(1):189-206.
|
[[32]] |
Wightman F, Ellenberg P, Churchill M, et al.HDAC inhibitors in HIV.Immunol Cell Biol 2012;90(1):47-54.
|
[[33]] |
Tsuji N, Kobayashi M, Nagashima K, et al.A new antifungal antibiotic, trichostatin.J Antibiot (Tokyo) 1976;29(1):1-6.
|
[[34]] |
Grant S, Easley C, Kirkpatrick P.Vorinostat.Nat Rev Drug Discov 2007;6(1):21-22.
|
[[35]] |
Richon VM.Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor.Br J Cancer 2006;95(Suppl 1):S2-S6.
|
[[36]] |
Rasmussen TA, Lewin SR.Shocking HIV out of hiding: Where are we with clinical trials of latency reversing agents?Curr Opin HIV AIDS 2016;11(4):394-401.
|
[[37]] |
Ueda H, Manda T, Matsumoto S, et al.FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice.J Antibiot (Tokyo) 1994;47(3):315-323.
|
[[38]] |
VanderMolen KM, McCulloch W, Pearce CJ, et al. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma.J Antibiot (Tokyo) 2011;64(8):525-531.
|
[[39]] |
Harper KN.Romidepsin reverses HIV-1 latency in vivo.AIDS 2016;30(5):N3.
|
[[40]] |
Wei DG, Chiang V, Fyne E, et al.Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing.PLoS Pathog 2014;10(4):e1004071.
|
[[41]] |
Xiong L, Chen CF, Min TL, et al.Romipeptides A and B, two new romidepsin derivatives isolated from Chromobacterium violaceum No. 968 and their antitumor activities in vitro.Chin J Nat Med 2019;17(2):155-160.
|
[[42]] |
Wang C, Henkes LM, Doughty LB, et al.Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities.J Nat Prod 2011;74(10):2031-2038.
|
[[43]] |
Masuoka Y, Nagai A, Shin-ya K, et al. Spiruchostatins A and B, novel gene expression-enhancing substances produced by Pseudomonas sp.Cheminform 2001;42(1):41-44.
|
[[44]] |
Zhou Z, Wang X, Zhang H, et al.Chromopeptide A, a highly cytotoxic depsipeptide from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94.Acta Pharm Sin B 2015;5(1):62-66.
|
[[45]] |
J⊘nsson KL, Tolstrup M, Vad-Nielsen J, et al. Histone deacetylase inhibitor romidepsin inhibits de novo HIV-1 infections.Antimicrob Agents Chemother 2015;59(7):3984-3994.
|
[[46]] |
S⊘gaard OS, Graversen ME, Leth S, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo.PLoS Pathog 2015;11(9):e1005142.
|
[[47]] |
Kumar A, Darcis G, Van Lint C, et al.Epigenetic control of HIV-1 post integration latency: implications for therapy.Clin Epigenetics 2015;7:103.
|
[[48]] |
Tripathy MK, McManamy ME, Burch BD, et al. H3K27 demethylation at the proviral promoter sensitizes latent HIV to the effects of vorinostat in ex vivo cultures of resting CD4+ T cells.J Virol 2015;89(16):8392-8405.
|
[[49]] |
Liao SG, Chen HD, Yue JM.Plant orthoesters.Chem Rev 2009;109(3):1092-1140.
|
[[50]] |
Vasas A, Hohmann J.Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008-2012).Chem Rev 2014;114(17):8579-8612.
|
[[51]] |
Wang HB, Wang XY, Liu LP, et al.Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families.Chem Rev 2015;115(9):2975-3011.
|
[[52]] |
Trindade-Silva AE, Lim-Fong GE, Sharp KH, et al.Bryostatins: biological context and biotechnological prospects.Curr Opin Biotechnol 2010;21(6):834-842.
|
[[53]] |
Kollár P, Rajchard J, Balounová Z, et al.Marine natural products: bryostatins in preclinical and clinical studies.Pharm Biol 2014;52(2):237-242.
|
[[54]] |
Doppler C, Schalasta G, Amtmann E, et al.Binding of NF-kB to the HIV-1 LTR is not sufficient to induce HIV-1 LTR activity.AIDS Res Hum Retroviruses 1992;8(2):245-252.
|
[[55]] |
Díaz L, Martínez-Bonet M, Sánchez J, et al.Bryostatin activates HIV-1 latent expression in human astrocytes through a PKC and NF-κB-dependent mechanism.Sci Rep 2015;5:12442.
|
[[56]] |
Jabareen A, Suleman M, Abu-Jaafar A, et al.Different molecular mechanisms of HTLV-1 and HIV LTR activation by TPA.Biochem Biophys Res Commun 2018;500(3):538-543.
|
[[57]] |
Xing S, Siliciano RF.Targeting HIV latency: pharmacologic strategies toward eradication.Drug Discov Today 2013;18(11-12):541-551.
|
[[58]] |
Pettit G, Herald C, Doubek D, et al.Isolation and structure of bryostatin 1.J Am Chem Soc 1982;104(24):6846-6848.
|
[[59]] |
Wender PA, Hardman CT, Ho S, et al.Scalable synthesis of bryostatin 1 and analogs, adjuvant leads against latent HIV.Science 2017;358(6360):218-223.
|
[[60]] |
Wender PA, Donnelly A, Loy B, et al.Rethinking the role of natural products: function-oriented synthesis, bryostatin, and bryologs.Nat Prod Med Chem 2014;60:473-544.
|
[[61]] |
Hale KJ, Manaviazar S.New approaches to the total synthesis of the bryostatin antitumor macrolides.Chem Asian J 2010;5(4):704-754.
|
[[62]] |
Yu HB, Yang F, Li YY, et al.Cytotoxic bryostatin derivatives from the South China Sea bryozoan Bugula neritina.J Nat Prod 2015;78(5):1169-1173.
|
[[63]] |
Wu R, Chen H, Chang N, et al.Unlocking the drug potential of the bryostatin family: recent advances in product synthesis and biomedical applications.Chemistry 2020;26(6):1166-1195.
|
[[64]] |
Ryckbosch SM, Wender PA, Pande VS.Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes.Nat Commun 2017;8(1):6.
|
[[65]] |
Pérez M, de Vinuesa AG, Sanchez-Duffhues G, et al. Bryostatin-1 synergizes with histone deacetylase inhibitors to reactivate HIV-1 from latency.Curr HIV Res 2010;8(6):418-429.
|
[[66]] |
Gutiérrez C, Serrano-Villar S, Madrid-Elena N, et al.Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy.AIDS 2016;30(9):1385-1392.
|
[[67]] |
Marsden MD, Loy BA, Wu X, et al.In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell “kick” and “kill” in strategy for virus eradication.PLoS Pathog 2017;13(9):e1006575.
|
[[68]] |
Cashmore AR, Seelye RN, Cain BF, et al.The structure of prostratin: a toxic tetracyclic diterpene ester from Pimelea Prostrata.Tetrahedron Lett 1976;17(20):1737-1738.
|
[[69]] |
Tsai JY, Rédei D, Forgo P, et al.Isolation of phorbol esters from Euphorbia grandicornis and evaluation of protein kinase C- and human platelet-activating effects of euphorbiaceae diterpenes.J Nat Prod 2016;79(10):2658-2666.
|
[[70]] |
Wang M, Wang Q, Wei Q, et al.Two new ent-atisanes from the root of Euphorbia fischeriana Steud.Nat Prod Res 2016;30(2):144-149.
|
[[71]] |
Adelakun TA, Ding X, Ombati RM, et al.A new highly oxygenated abietane diterpenoid and a new lysosome generating phorbol ester from the roots of Euphorbia fischeriana Steud.Nat Prod Res 2020;34(21):3027-3035.
|
[[72]] |
Gustafson KR, Cardellina JH 2nd, McMahon JB, et al. A nonpromoting phorbol from the samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1.J Med Chem 1992;35(11):1978-1986.
|
[[73]] |
Wender PA, Kee JM, Warrington JM.Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV.Science 2008;320(5876):649-652.
|
[[74]] |
Tong G, Liu Z, Li P.Total synthesis of (±)-prostratin.Chem 2018;4:2944-2954.
|
[[75]] |
Marsden MD, Wu X, Navab SM, et al.Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents.Virology 2018;520:83-93.
|
[[76]] |
Kulkosky J, Culnan DM, Roman J, et al.Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART.Blood 2001;98(10):3006-3015.
|
[[77]] |
Zhang G, Kazanietz MG, Blumberg PM, et al.Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester.Cell 1995;81(6):917-924.
|
[[78]] |
Evans FJ, Schmidt RJ.The succulent euphorbias of Nigeria. III. Structure and potency of the aromatic ester diterpenes of Euphorbia poissonii Pax.Acta Pharmacol Toxicol (Copenh) 1979;45(3):181-191.
|
[[79]] |
Bocklandt S, Blumberg PM, Hamer DH.Activation of latent HIV-1 expression by the potent anti-tumor promoter 12-deoxyphorbol 13-phenylacetate.Antiviral Res 2003;59(2):89-98.
|
[[80]] |
Kulkosky J, Sullivan J, Xu Y, et al.Expression of latent HAART-persistent HIV type 1 induced by novel cellular activating agents.AIDS Res Hum Retroviruses 2004;20(5):497-505.
|
[[81]] |
Márquez N, Calzado MA, Sánchez-Duffhues G, et al.Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation.Biochem Pharmacol 2008;75(6):1370-1380.
|
[[82]] |
Sayed MD, Riszk A, Hammouda FM, et al.Constituents of Egyptian Euphorbiaceae. IX. Irritant and cytotoxic ingenane esters from Euphorbia paralias L.Experientia 1980;36(10):1206-1207.
|
[[83]] |
Adolf W, Chanai S, Hecker E.3-O-angeloylingenol, the toxic and skin irritant factor from latex of Euphorbia antiquorum L (Euphorbiaceae) and from a derived Thai purgative and anthelmintic (vermifuge) drug.J Sci Soc Thailand 1983;9:81-88.
|
[[84]] |
Lin LJ, Marshall GT, Kinghorn AD.The dermatitis-producing constituents of Euphorbia hermentiana latex.J Nat Prod 1983;46(5):723-731.
|
[[85]] |
Marco J, Sanz-Cervera J, Yuste A.Ingenane and lathyrane diterpenes from the latex of Euphorbia canariensis.Phytochemistry 1998;45(4):1095-1099.
|
[[86]] |
Hohmann J, Evanics F, Berta L, et al.Diterpenoids from Euphorbia peplus.Planta Med 2000;66(3):291-294.
|
[[87]] |
Jiang G, Mendes EA, Kaiser P, et al.Synergistic reactivation of latent HIV expression by ingenol-3-angelate, PEP005, targeted NF-kB signaling in combination with JQ1 induced p-TEFb activation.PLoS Pathog 2015;11(7):e1005066.
|
[[88]] |
Liu Q, Li W, Huang L, et al.Identification, structural modification, and dichotomous effects on human immunodeficiency virus type 1 (HIV-1) replication of ingenane esters from Euphorbia kansui.Eur J Med Chem 2018;156:618-627.
|
[[89]] |
Winkler JD, Rouse MB, Greaney MF, et al.The first total synthesis of (+/-)-ingenol.J Am Chem Soc 2002;124(33):9726-9728.
|
[[90]] |
Jørgensen L, McKerrall SJ, Kuttruff CA, et al. 14-step synthesis of (+)-ingenol from (+)-3-carene.Science 2013;341(6148):878-882.
|
[[91]] |
Fidler B, Goldberg T.Ingenol mebutate gel (Picato): a novel agent for the treatment of actinic keratoses.P T 2014;39(1):40-46.
|
[[92]] |
Highlights of Prescribing Information of PICATO® (Ingenol Mebutate) Gel, for Topical Use. U.S. Food and Drug Administration. Updated December 2020. Available from:
|
[[93]] |
Kupchan SM, Shizuri Y, Murae T, et al.Letter: Gnidimacrin and gnidimacrin 20-palmitate, novel macrocyclic antileukemic diterpenoid esters from Gnidia subcordata1,2.J Am Chem Soc 1976;98(18):5719-5720.
|
[[94]] |
Pettit GR, Zou JC, Goswami A, et al.Antineoplastic agents, 88. Pimelea prostrata.J Nat Prod 1983;46(4):563-568.
|
[[95]] |
Otsuki K, Li W, Asada Y, et al.Anti-HIV gnidimacrin related macrocyclic daphnane orthoesters from Daphne odora.Org Lett 2020;22(1):11-15.
|
[[96]] |
Asada Y, Sukemori A, Watanabe T, et al.Stelleralides A-C, novel potent anti-HIV daphnane-type diterpenoids from Stellera chamaejasme L.Org Lett 2011;13(11):2904-2907.
|
[[97]] |
Lai W, Huang L, Zhu L, et al.Gnidimacrin, a potent anti-HIV diterpene, can eliminate latent HIV-1 ex vivo by activation of protein kinase C β.J Med Chem 2015;58(21):8638-8646.
|
[[98]] |
Huang L, Ho P, Yu J, et al.Picomolar dichotomous activity of gnidimacrin against HIV-1.PLoS One 2011;6(10):e26677.
|
[[99]] |
Huang L, Lai WH, Zhu L, et al.Elimination of HIV-1 latently infected cells by gnidimacrin and a selective HDAC inhibitor.ACS Med Chem Lett 2018;9(3):268-273.
|
[[100]] |
Liu Q, Cheng YY, Li W, et al.Synthesis and structure-activity relationship correlations of gnidimacrin derivatives as potent HIV-1 inhibitors and HIV latency reversing agents.J Med Chem 2019;62(15):6958-6971.
|
[[101]] |
Banerjee C, Archin N, Michaels D, et al.BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.J Leukoc Biol 2012;92(6):1147-1154.
|
[[102]] |
Tsai A, Irrinki A, Kaur J, et al.Toll-like receptor 7 agonist GS-9620 induces HIV expression and HIV-specific immunity in cells from HIV-infected individuals on suppressive antiretroviral therapy.J Virol 2017;91(8):e02166-e02216.
|
[[103]] |
Borducchi EN, Liu J, Nkolola JP, et al.Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys.Nature 2018;563(7731):360-364.
|
[[104]] |
Mills CA, Ramgopal A, DeJesus M, et al.A toll-like receptor 7 agonist, induces immune activation in virally suppressed adults living with human immunodeficiency virus-1.Clin Infect Dis 2021;72(11):e815-e824.
|
[[105]] |
Greene WC.A history of AIDS: looking back to see ahead.Eur J Immunol 2007;37(Suppl 1):S94-S102.
|
/
〈 | 〉 |