Mineralization at Different Structural Levels in the Crust

Saisai LI , Hongrui ZHANG , Zengqian HOU

Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (4) : 1042 -1058.

PDF
Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (4) : 1042 -1058. DOI: 10.1111/1755-6724.15319
Original Article

Mineralization at Different Structural Levels in the Crust

Author information +
History +
PDF

Abstract

Metallogenic research on structural levels can reveal vertical patterns of mineralization and facilitate the deep exploration of economic minerals. However, research focusing on the correlation between structural levels and mineralization remains limited. In this study, we summarize the deformation patterns and associated mineral deposits observed at different crustal levels (i.e., surface, shallow, middle, and deep structural levels, corresponding to depths of <2, 2–8, 8–15, and >15 km, respectively). Furthermore, we examine the genetic association between structural levels and metallogenesis, demonstrating that distinct structural levels are linked to specific types of mineralization. Key factors that vary across crustal levels include temperature, pressure, and fluid circulation. Ore-forming processes involve interactions between structures and fluids under varying temperatures and pressures. Structural levels influence mineralization by controlling the temperatures, pressures, and deformation mechanisms that drive the activation, migration, and enrichment of ore-forming materials.

Keywords

deformation / mineralization / structural control / structural level / crustal level

Cite this article

Download citation ▾
Saisai LI, Hongrui ZHANG, Zengqian HOU. Mineralization at Different Structural Levels in the Crust. Acta Geologica Sinica (English Edition), 2025, 99(4): 1042-1058 DOI:10.1111/1755-6724.15319

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adetunji, A.Q., Launay, G., Ferguson, I.J., Simmons, J.M., Ma, C., Ayer, J., and Lafrance, B., 2023. Crustal conductivity footprint of the orogenic Au district in the Red Lake greenstone belt, western Superior craton, Canada. Geology, 51(4): 377-382.

[2]

Ague, J.J., 2014. Fluid Flow in the Deep Crust. In: Holland H.D., and Turekian K.K. (eds.), Treatise on Geochemistry, Second Edition. Elsevier, Oxford, 203-247.

[3]

Akciz, S., Burchfiel, B.C., Crowley, J.L., Jiyun, Y., and Liangzhong, C., 2008. Geometry, kinematics, and regional significance of the Chong Shan shear zone, Eastern Himalayan Syntaxis, Yunnan, China. Geosphere, 4: 292-314.

[4]

Anderson, M.O., 2018. Deep-sea ore deposits. Nature Geoscience, 11(10): 706.

[5]

Azami, K., Machida, S., Hirano, N., Nakamura, K., Yasukawa, K., Kogiso, T., Nakanishi, M., and Kato, Y., 2023. Hydrothermal ferromanganese oxides around a petit-spot volcano on old and cold oceanic crust. Communications Earth & Environment, 4(1): 191.

[6]

Barley, M.E., and Groves, D.I., 1992. Supercontinent cycles and the distribution of metal deposits through time. Geology, 20: 291-294.

[7]

Brown, M., and Solar, G.S., 1998. Shear-zone systems and melts: feedback relations and self-organization in orogenic belts. Journal of Structural Geology, 20: 211-227.

[8]

Burchfiel, B.C., and Wang, E., 2003. Northwest-trending, middle Cenozoic, left-lateral faults in southern Yunnan, China, and their tectonic significance. Journal of Structural Geology, 25: 781-792.

[9]

Chang, C., and Luo, G., 2022. The fracture forming mechanism at the top of the intrusion body in porphyry deposits: The insights from a multiphysical field coupled numerical model. Chinese Journal of Geophysics, 65(8): 3006-3024 (in Chinese with English abstract).

[10]

Chauvet, A., 2019. Structural control of ore deposits: The role of pre-existing structures on the formation of mineralised vein systems. Minerals, 9: 56.

[11]

Che, X.D., Wu, F.Y., Wang, R.C., Gerdes, A., Ji, W.Q., Zhao, Z.H., Yang, J.H., and Zhu, Z.Y., 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Review, 65: 979-989.

[12]

Chen, B.L., 2001. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics. Chinese Journal of Geology, 36(3): 380-384 (in Chinese with English abstract).

[13]

Chen, B.L., 2020. Development process of fault structure and formation and evolution of ore-controlling structure: A case study of the Zoujiashan uranium deposit. Journal of Geomechanics, 26(3): 285-298 (in Chinese with English abstract).

[14]

Chen, B.L., 2023. Thoughts on orecontrolling structure of the Yangshan gold deposit in southern Gansu Province, western China. Acta Geologica Sinica, 97(8): 2512-2533 (in Chinese with English abstract).

[15]

Chen, B.L., and Gao, Y., 2022. Study on ore-bearing fracture system of veinlet orebody in Tongchang porphyry copper deposit, Dexing of Jiangxi. Mineral Deposits, 41(6): 1093-1107 (in Chinese with English abstract).

[16]

Chen, B.L., Dong, F.X., and Li, Z.J., 1999. Ore-forming model of ductile shear zone type gold deposits. Geological Review, 45(2): 186-192 (in Chinese with English abstract).

[17]

Chen, B.L., Gao, Y., Wang, Y., Liu, X.C., and Qi, J.M., 2024. Denudation and preservation of the Changjiang Uranium ore field in north Guangdong, China: Revealed by apatite fission track thermochronology. Geotectonica et Metallogenia, 48(5): 911-927 (in Chinese with English abstract).

[18]

Chen, G.D., 1985. Metallogenic Structure Research Method. Beijing: Geological Publishing House (in Chinese).

[19]

Chen, X.H., Han, L.L., Ding, W.C., Xu, S.L., Tong, Y., Zhang, Y.P., Li, B., Zhou, Q., and Wang, Y., 2024. Phanerozoic tectonic evolution, metallogenesis and formation of mineral systems in China. Acta Geologica Sinica (English Edition), 98(4): 819-842.

[20]

Chen, Z.L., and Chen, B.L., 2012. Thinking, steps and practice of research on ore-field structure in geomechanics. Chinese Journal of Nature, 34(4): 208-215 (in Chinese with English abstract).

[21]

Chen, Z.L., Zhou, Y.G., Han, F.B., Chen, B.L., Hao, R.X., Li, S.B., and Liu, Z.R., 2012. Exhumation degree of the Tianshan range and its implications for ore preservation. Earth Science-Journal of China University of Geosciences, 37(5): 903-916 (in Chinese with English abstract).

[22]

Cheng, N.N., Liu, Q., Hou, Q.L., Wei, W., Shi, M.Y., He, M., and Guo, Q.Q., 2018. Discussions on the stress-chemical process of gold precipitation and metallogenic mechanism in shear zone type gold deposits. Acta Petrologica Sinica, 34(7): 2165-2180 (in Chinese with English abstract).

[23]

Chi, G., Li, Z., Chu, H., Bethune, K.M., Quirt, D.H., Ledru, P., Normand, C., Card, C., Bosman, S., Davis, W.J., and Potter, E.G., 2018. A shallow-burial mineralization model for the unconformity-related uranium deposits in the Athabasca Basin. Economic Geology, 113(5): 1209-1217.

[24]

Chi, G.X., and Lin, G., 2015. Relationships between hydrodynamics of mineralization and tectonic settings. Geotectonica et Metallogenia, 39: 402-412.

[25]

Chi, G.X., Xu, D.R., Xue, C.J., Li, Z.H., Ledru, P., Deng, T., Wang, Y.M., and Song, H., 2022. Hydrodynamic links between shallow and deep mineralization systems and implications for deep mineral exploration. Acta Geologica Sinica (English Edition), 96: 1-25.

[26]

Christensen, N.I., and Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust. Journal of Geophysical Research, 100(B6): 9761-9788.

[27]

Corbett, G.J., and Leach, T.M., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Littleton, Colorado: Society of Economic Geologists.

[28]

Cox, S.F., 2010. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, 10(1-2): 217-233.

[29]

Cox, S.F., 2020. The dynamics of permeability enhancement and fluid flow in overpressured, fracture-controlled hydrothermal systems. Reviews in Economic Geology, 21: 25-82.

[30]

Cox, S.F., Wall, V.J., Etheridge, M.A., and Potter, T.F., 1991. Deformational and metamorphic processes in the formation of mesothermal vein-hosted gold deposits-examples from the Lachlan Fold Belt in central Victoria, Australia. Ore Geology Reviews, 6(5): 391-423.

[31]

Cox, S.F., Knackstedt, M.A., and Braun, J., 2001. Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology, 14: 1-24.

[32]

Dalstra, H.J., and Rosière, C.A., 2008. Structural controls on high-grade iron ores hosted by banded iron formation: A global perspective. Reviews in Economic Geology, 15: 73-106.

[33]

Decrée, S., Deloule, É., Ruffet, G., Dewaele, S., Mees, F., Marignac, C., Yans, J., and De Putter, T., 2010. Geodynamic and climate controls in the formation of Mio-Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo. Mineralium Deposita, 45: 621-629.

[34]

Deng, J., Wang, Q., Li, G., and Santosh, M., 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299.

[35]

Deng, J., Wang, Q., Li, G., and Zhao, Y., 2015. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geology Reviews, 65: 42-54.

[36]

Deng, X.D., Li, J.W., Luo, T., and Wang, H.Q., 2017. Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contributions to Mineralogy and Petrology, 172: 71.

[37]

Deng, X.D., Luo, T., Li, J.W., and Hu, Z.C., 2019. Direct dating of hydrothermal tungsten mineralization using in situ wolframite U-Pb chronology by laser ablation ICP-MS. Chemical Geology, 515: 94-104.

[38]

Druguet, E., and Hutton, D.H.W., 1998. Syntectonic anatexis and magmatism in a midcrustal transpressional shear zone: An example from the Hercynian rocks of the eastern Pyrenees. Journal of Structural Geology, 20: 905-916.

[39]

Duuring, P., 2020. Rare-element pegmatites; a mineral system analysis. Geological Survey of Western Australia, 1-6.

[40]

Fossen, H., 2016. Structural Geology (2nd ed.). Cambridge University Press.

[41]

Fox, S., Katzir, Y., Bach, W., Schlicht, L., and Glessner, J., 2020. Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote. Communications Earth & Environment, 1(1): 52.

[42]

Frimmel, H.E., and Minter, W.E.L., 2002. Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. Society of Economic Geologists Special Publication 9: 17-45.

[43]

Georgatou, A., Chiaradia, M., and Klaver, M., 2022. Deep to shallow sulfide saturation at Nisyros active volcano. Geochemistry, Geophysics, Geosystems, 23(2): e2021GC010161.

[44]

Goldfarb, R.J., and Pitcairn, I., 2023. Orogenic gold: Is a genetic association with magmatism realistic. Mineralium Deposita, 58(1): 5-35.

[45]

Green, H.W., and Jung, H., 2005. Fluids, faulting, and flow. Elements, 1(1): 31-37.

[46]

Griffin, W., Begg, G., and O'Reilly, S.Y., 2013. Continental-root control on the genesis of magmatic ore deposits. Nature Geoscience, 6(11): 905-910.

[47]

Groves, D.I., 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366-374.

[48]

Groves, D.I., and Bierlein, F.P., 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164: 19-30.

[49]

Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7-27.

[50]

Groves, D.I., Santosh, M., Deng, J., Wang, Q., Yang, L., and Zhang, L., 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2): 275-292.

[51]

Groves, D.I., Santosh, M., Zhang, L., Deng, J., Yang, L.Q., and Wang, Q.F., 2021. Subduction: The recycling engine room for global metallogeny. Ore Geology Reviews, 134: 104130.

[52]

Guillou-Frottier, L., and Burov, E., 2003. The development and fracturing of plutonic apexes: Implications for porphyry ore deposits. Earth and Planetary Science Letters, 214(1-2): 341-356.

[53]

Guo, J.H., Mao, S.D., Chen, Y.J., Qin, Y., Yang, F.L., Li, J.Z., and Nan, Z.L., 2009. Geological features and ore controlling factors of the Yangshan gold ore field in Wenxian County, Gansu Province. Geotectonica et Metallogenia, 33(2): 243-252 (in Chinese with English abstract).

[54]

Han, R.S., Zou, H.J., Wu, P., Fang, W.X., and Hu, Y.Z., 2010. Coupling tectonic-fluid metallogenic model of the sandstone-type copper deposit in the Chuxiong basin, China. Acta Geologica Sinica, 84(10): 1438-1447 (in Chinese with English abstract).

[55]

Han, R.S., Liu, F., and Zhang, Y., 2025. Discussion on-ore-controlling roles of structural system in hydrothermal metallogenic system. Earth Science Frontiers, 32(2): 371-389 (in Chinese with English abstract).

[56]

Hart, C.J.R., 2007. Reduced intrusion-related gold systems. In: Goodfellow W.D. (ed.), Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods. Geological Association of Canada, Mineral Deposits Division, Special Publication, 95-112.

[57]

He, L.Q., Song, Y.C., Chen, K.X., Hou, Z.Q., Yu, F.M., Yang, Z.S., Wei, J.Q., Li, Z., and Liu, Y.C., 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews, 36: 106-132.

[58]

Hedenquist, J.W., and Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore-deposits. Nature, 370: 519-527.

[59]

Heinson, G., Duan, J., Kirkby, A., Robertson, K., Thiel, S., Aivazpourporgou, S., and Soyer, W., 2021. Lower crustal resistivity signature of an orogenic gold system. Scientific Reports, 11(1): 15807.

[60]

Hitzman, M.W., and Broughton, D.W., 2017. Discussion: “Age of the Zambian copper belt” by Sillitoe et al. (2017) Mineralium Deposita. Mineralium Deposita, 52: 1-3.

[61]

Hobbs, B., Ord, A., and Teyssier, C., 1986. Earthquakes in the ductile regime? Pure and Applied Geophysics, 124: 309-336.

[62]

Holmes, J.S., and Grigson, J.L., 2019. Pilgangoora lithium-tantalum project: Deposit geology and new constraints on rare-metal pegmatite genesis. ASEG Extended Abstracts, 1: 1-6.

[63]

Hou, Q.L., Cheng, N.N., Shi, M.Y., and Lu, X., 2018. The union of various rock deformation criteria at different structural levels and its further development. Acta Petrologica Sinica, 34(6): 1792-1800. (in Chinese with English abstract).

[64]

Hou, Z.Q., and Zhang, H.R., 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain. Ore Geology Reviews, 70: 346-384.

[65]

Hou, Z.Q., Ma, H.W., Zaw, K., Zhang, Y.Q., Wang, M.J., Wang, Z., Pan, G.T., and Tang, R.L., 2003. The Himalayan Yulong porphyry copper belt: Product of large-scale strike-slip faulting in eastern Tibet. Economic Geology, 98: 125-145.

[66]

Hou, Z.Q., Zaw, K., Rona, P., Li, Y.Q., Qu, X.M., and Song, S.H., 2008. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu Province, Northwestern China. Economic Geology, 103: 269-292.

[67]

Hou, Z.Q., Wang, Q.F., Zhang, H.J., Xu, B., Yu, N., Wang, R., Groves, D.I., Zheng, Y.C., Han, S.C., Gao, L., and Yang, L., 2022. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits. National Science Review, 10(3): nwac257.

[68]

Hu, M.D., Zhang, H.R., Jia, J.W., and Liu, Y.Y., 2015. Structural control, oxygen and carbon isotope, and REE geochemistry of Liziping Pb-Zn ore deposit, Lanping Basin, Yunnan Province. Mineral Deposits, 34(5): 1057-1071 (in Chinese with English abstract).

[69]

Hu, R.Z., Fu, S.L., Huang, Y., Zhou, M.F., Fu, S.H., Zhao, C.H., Wang, Y.J., Bi, X.W., and Xiao, J.F., 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137: 9-34

[70]

Huston, D.L., Doublier, M.P., Eglington, B., Pehrsson, S., Piercey, S., and Mercier-Langevin, P., 2023. Convergent margin metallogenic cycles: A window to secular changes in Earth's tectonic evolution. Earth-Science Reviews, 245: 104551.

[71]

Jia, J.W., Zhang, H.R., and Hu, M.D., 2014. The progress in the study of vein Pb-Zn-Cu-Ag polymetallic epithermal deposits. Acta Petrologica et Mineralogica, 33(4): 726-746 (in Chinese with English abstract).

[72]

Jiang, S.Y., Zhao, K.D., Jiang, H., Su, H.M., Xiong, S.F., Xiong, Y.Q., Xu, Y.M., Zhang, W., and Zhu, L.Y., 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview. Chinese Science Bulletin, 65(33): 3730-3745 (in Chinese).

[73]

Kerrich, R., Goldfarb, R.J., and Richards, J.P., 2005. Metallogenic provinces in an evolving geodynamic framework. Economic Geology, 100: 1097-1136.

[74]

Kolb, J., 2008. The role of fluids in partitioning brittle deformation and ductile creep in auriferous shear zones between 500 and 700°C. Tectonophysics, 446(1): 1-15.

[75]

Kolb, J., Rogers, A., Meyer, F.M., and Vennemann, T.W., 2004. Development of fluid conduits in the auriferous shear zones of the Hutti gold mine, India: Evidence for spatially and temporally heterogeneous fluid flow. Tectonophysics, 378(1-2): 65-84.

[76]

Krushnisky, A., Mercier-Langevin, P., Ross, P.S., Goutier, J., McNicoll, V., Moore, L., Monecke, T., Jackson, S.E., Yang, Z., Petts, D.C., and Pilote, C., 2023. Geology and controls on gold enrichment at the horne 5 deposit and implications for the architecture of the Gold-Rich horne volcanogenic massive sulfide complex, Abitibi greenstone belt, Canada. Economic Geology, 118(2): 285-318.

[77]

Lascelles, D.F., 2006. The genesis of the Hope Downs iron ore deposit, Hamersley province, Western Australia. Economic Geology, 101(7): 1359-1376.

[78]

Leach, D.L., Song, Y.C., and Hou, Z.Q., 2017. The world-class Jinding Zn-Pb deposit: Ore formation in an evaporite dome, Lanping basin, Yunnan, China. Mineralium Deposita, 52: 281-296.

[79]

Leng, C.B., Cooke, D.R., Hou, Z.Q., Evans, N.J., Zhang, X.C., Chen, W.T., Danišík, M., McInnes, B.I.A., and Yang, J.H., 2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating. Economic Geology, 113(5): 1077-1092.

[80]

Lesher, C.M., and Keays, R.R., 2002. Komatiite-associated Ni-Cu-PGE deposits: Geology, mineralogy, geochemistry and genesis. Canadian Institute of Mining, Metallurgy and Petroleum, 54: 579-618.

[81]

Li, H.J., Wang, Q.F., Yang, L., Dong, C.Y., Weng, W.J., and Deng, J., 2022. Alteration and mineralization patterns in orogenic gold deposits: Constraints from deposit observation and thermodynamic modeling. Chemical Geology, 607: 121012.

[82]

Li, S.S., Feng, Z.H., Shan, Y.P., Fu, W., Le, X.W., Liu, W.W., and Xu, W.Z., 2017. Fracture structural analysis of Nongtun Pb-Zn deposit in Xidamingshan, Guangxi. Mineral Deposits, 36(2): 275-290 (in Chinese with English abstract).

[83]

Li, S.S., Feng, Z.H., Fu, W., Li, Z.M., and Hu, R.G., 2020. Structural analysis of the Luowei orefield in Xidamingshan, Guangxi, China. Resource Geology, 70(1): 89-107.

[84]

Li, S.S., Wang, Y., Zhang, H.R., Liu, X.Y., Wang, Q.Y., and Yang, S., 2023. Zircon U-Pb dating, geochemistry and geological significance of the Shuixie gabbros in Yongping county, Yunnan province. Acta Geologica Sinica, 97(4): 1157-1177 (in Chinese with English abstract).

[85]

Li, S.S., Zhang, H.R., Blenkinsop, T., Hou, Z.Q., Xue, C.D., and Feng, Z.J., 2025. Formation of the Shuixie Cu-Co ore district in response to structural reactivation during block rotation in the southeastern Tibetan Plateau. Mineralium Deposita, https://doi.org/10.1007/s00126-025-01362-y.

[86]

Liang, M.J., Yang, T.N., Xue, C.D., Xin, D., Yan, Z., Liao, C., Han, X., Xie, Z.P., and Xiang, K., 2022. Complete deformation history of the transition zone between oblique and orthogonal collision belts of the SE Tibetan Plateau: Crustal shortening and rotation caused by the indentation of India into Eurasia. Journal of Structural Geology, 156: 104545.

[87]

Liang, W., Li, G.M., Basang, Y.D., Zhang, L.K., Fu, J.G., Huang, Y., Zhang, Z., Wang, Y.Y., and Cao, H.W., 2021. Metallogenesis of Himalaya gneiss dome: An example from Cuonadong gneiss dome in Zhaxikang ore concentration area. Mineral Deposits, 40(5): 932-948 (in Chinese with English abstract).

[88]

Lindgren, W., 1933. Mineral Deposits (4 ed.). New York: McGraw Hill Brook Co.

[89]

Liu, J.L., Walter, J.M., and Weber, K., 2002. Fluid-enhanced low-temperature plasticity of calcite marble: Microstructures and mechanisms. Geology, 30(9): 787.

[90]

Liu, W.H., Zhang, J., Sun, T., and Wang, J., 2014. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. Journal of Geochemical Exploration, 138: 22-32.

[91]

Liu, X.C., 2019. Finite-element simulation of structure-fluid coupling: A case study in vein-type tungsten deposits. Journal of Geomechanics, 25(1): 163-169 (in Chinese with English abstract).

[92]

Liu, Z.C., Ji, J.Q., Sa, X., Chen, Y.P., and Zhong, D.L., 2018. Crustal deformation and tectonic levels of Nujiang Gorge since the Miocene. Science China Earth Sciences, 61: 93-108.

[93]

Liu, Z.H., Chen, Y.S., Jia, Z.Y., Xu, Z.Y., Li, G., and Li, W.Q., 2020. Deformation mechanism and tectonic rock types at different tectonic levels of the crust. Acta Petrologica Sinica, 36(8): 2344-2356 (in Chinese with English abstract).

[94]

Lu, G.X., 2015. A discussion on the classification in ore field geology. Earth Science Frontiers, 22(4): 1-12 (in Chinese with English abstract).

[95]

Lu, J.S., 1999. Tectonic deformation of different levels and gold deposits. Gold Geology, 5: 32-36 (in Chinese with English abstract).

[96]

Mao, J.W., Cheng, Y., Chen, M., and Franco, P., 2013. Major types and timespace distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48: 267-294.

[97]

Mattauer, M., 1968. Les traits structuraux essentiels de la chaîne Pyrénéenne. Revue de Géographie Physique et Géologie Dynamique, 10(1): 3-11.

[98]

Micklethwaite, S., Sheldon, H.A., and Baker, T., 2010. Active fault and shear processes and their implications for mineral deposit formation and discovery. Journal of Structural Geology, 32(2): 151-165.

[99]

No. 932 Team of Nonferrous Metals Geological Exploration Company of Guangdong Province (NTNMGECGP), 1966. How do we use “Five floors” regulation for prospecting assessment and exploration of wolframite-quartz type deposit. Geology and Prospecting, 5: 15-19 (in Chinese).

[100]

Passarelli, C.R., Basei, M.A.S., Siga, J.O., Mc Reath, I., and Neto, M.D.C.C., 2010. Deformation and geochronology of syntectonic granitoids emplaced in the major Gercino shear zone, southeastern South America. Gondwana Research, 17: 688-703.

[101]

Pearce, R.K., Sánchez de la Muela, A., Moorkamp, M., Hammond, J.O.S., Mitchell, T.M., Cembrano, J., Araya Vargas, J., Meredith, P. G., Iturrieta, P., Pérez-Estay, N., Marshall, N. R., Smith, J., Yañez, G., Ashley Griffith, W., Marquardt, C., Stanton-Yonge, A., and Núñez, R., 2020. Reactivation of fault systems by compartmentalized hydrothermal fluids in the southern Andes revealed by magnetotelluric and seismic data. Tectonics, 39(12): e2019TC005997.

[102]

Phelps-Barber, Z., Trench, A., and Groves, D.I., 2022. Recent pegmatite-hosted spodumene discoveries in Western Australia: Insights for lithium exploration in Australia and globally. Applied Earth Science, 131(2): 100-113.

[103]

Philippon, M., and Corti, G., 2016. Obliquity along plate boundaries. Tectonophysics, 693: 171-182.

[104]

Pi, Q.H., Hu, R.Z., Xiong, B., Li, Q.L., and Zhong, R.C., 2017. In situ SIMS U-Pb dating of hydrothermal rutile: Reliable age for the Zhesang Carlin type gold deposit in the golden triangle region, SW China. Mineralium Deposita, 52: 1179-1190.

[105]

Piquer, J., Berry, R.F., Scott, R.J., and Cooke, D.R., 2016, Arc-oblique fault systems: Their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile. Journal of Structural Geology, 89: 101-117.

[106]

Piquer, J., Sanchez-Alfaro, P., and Pérez-Flores, P., 2021. A new model for the optimal structural context for giant porphyry copper deposit formation. Geology, 49(5): 597-601.

[107]

Powell, C.M., Oliver, N.H.S., Li, Z.X., Martin, D.M., and Ronaszecki, J., 1999. Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology, 27: 175-178.

[108]

Qin, K.Z., Zhao, J.X., Fan, H.R., Tang, D.M., Li, G.M., Yu, K.L., Cao, M.J., and Su, B.X., 2021. On the ore-forming depth and possible maximum vertical extension of the major type ore deposits. Earth Science Frontiers, 28(3): 271-294 (in Chinese with English abstract).

[109]

Ren, J., Yao, H., Yang, Y., Wang, L., He, G., Lai, P., Zhou, J., Deng, X., Liu, S., Deng, X., and Jiang, Y., 2023. Critical metal enrichment in atypical hydrogenetic ferromanganese nodules: A case study in the Central Basin Ridge of the West Philippine Basin. Chemical Geology, 615: 121224.

[110]

Rhys, D.A., Lewis, P.D., and Rowland, J.V., 2020. Structural controls on ore localization in epithermal gold-silver deposits: Mineral systems approach. Reviews in Economic Geology, 21: 83-145.

[111]

Richards, J.P., and Tosdal, R.M., 2001. Structural controls on ore genesis. Reviews in Economic Geology, 14: 181.

[112]

Ripley, E.M., and Li, C., 2013. Sulfide saturation in mafic magmas: Is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Economic Geology, 108(1): 45-58.

[113]

Rogers, A.J., Kolb, J., Meyer, F.M., and Vennemann, T., 2013. Two stages of gold mineralization at Hutti mine, India. Mineralium Deposita, 48(1): 99-114.

[114]

Román, N., Reich, M., Leisen, M., Morata, D., Barra, F., and Deditius, A.P., 2019. Geochemical and micro-textural fingerprints of boiling in pyrite. Geochimica et Cosmochimica Acta, 246: 60-85.

[115]

Rosière, C.A., and Rios, F.J., 2004. The origin of hematite in high-grade iron ores based based on infrared microscopy and fluid inclusion studies: The example of the conceicao mine, Quadrilatero Ferrifero, Brazil. Economic Geology, 99(3): 611-624.

[116]

Rudnick, R.L., and Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1-64.

[117]

Shi, S.H., Hu, R.Z., Wen, H.J., Sun, R.L., Wang, J.S., and Chen, H., 2010. Geochronology of the Shazijiang uranium ore deposit, northern Guangxi, China: U-Pb ages of pitchblende and their geological significance. Acta Geologica Sinica, 84(8): 1175-1182. (in Chinese with English abstract).

[118]

Sibson, R.H., 2001. Seismogenic framework for hydrothermal transport and ore deposition. Reviews in Economic Geology, 14: 25-50.

[119]

Sibson, R.H., Robert, F., and Poulsen, K.H., 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6): 551-555.

[120]

Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105: 3-41.

[121]

Sillitoe, R.H., Perelló, J., Creaser, R.A., Wilton, J., Wilson, A., and Dawborn, T., 2017. Age of the Zambian copper belt. Mineralium Deposita, 52: 1245-1268.

[122]

Sintubin, M., Debacker, T.N., and Van Baelen, H., 2012. Kink band and associated en-echelon extensional vein array. Journal of Structural Geology, 35: 1.

[123]

Song, C., Wei, W., Hou, Q.L., Liu, Q., Zhang, H.Y., Wu, S.C., Zhu, H.F., and Li, H., 2016. Geological characteristics of the Laoshan'ao shear zone and its relationship with the Xiangdong tungsten deposit, Chaling, eastern Hunan Province. Acta Petrologica Sinica, 32(5): 1571-1580 (in Chinese with English abstract).

[124]

Song, H., Chi, G., Wang, K., Li, Z., Bethune, K.M., Potter, E.G., and Liu, Y., 2021. The role of graphite in the formation of unconformity-related uranium deposits of the Athabasca basin, Canada: A case study of Raman spectroscopy of graphite from the world-class Phoenix uranium deposit. American Mineralogist, 107(11): 2128-2142.

[125]

Song, X.Y., Xiao, J.F., Zhu, D., Zhu, W.G., and Chen, L.M., 2010. New insights on the formation of magmatic sulfide deposits in magma conduit system. Earth Science Frontiers, 17(1): 153-163 (in Chinese with English abstract).

[126]

Song, X.Y., Chen, L.M., Yu, S.Y., Tao, Y., She, Y.W., Luan, Y., Zhang, X.Q., and He, H.L., 2018. Geological features and genesis of the V-Ti magenetite deposits in the Emeishan Large Igneous Province, SW China. Bulletin of Mineralogy, Petrology and Geochemistry, 37: 1003-1018 (in Chinese with English abstract).

[127]

Song, Y.C., 2024. A novel three-stage tectonic model for Mississippi Valley-type Zn-Pb deposits in orogenic fold-and-thrust belts. Acta Geologica Sinica (English Edition), 98(4): 843-849.

[128]

Song, Y.C., Liu, Y.C., Hou, Z.Q., Fard, M., and Zhang, H.R., 2019. Sediment-hosted Pb-Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls. Gondwana Research, 75: 249-281.

[129]

Song, Y.C., Hou, Z.Q., Xue, C.D., and Huang, S.Q., 2020. New mapping of the world-class Jinding Zn-Pb deposit, Lanping basin, Southwest China: Genesis of ore host rocks and records of hydrocarbon-rock interaction. Economic Geology, 115: 981-1002.

[130]

Sorokin, V.I., and Dadze, T.P., 1994. Solubility and complex formation in the systems Hg-H2O, S-H2O, SiO2-H2O and SnO2-H2O. In: Shmulovich K.I., Yardley B.W.D., and Gonchar G.G. (eds.), Fluids in the Crust. London: Chapman & Hall, 57-93.

[131]

Spier, C.A., de Oliveira Sonia, M.B., and Rosière, C.A., 2003. Geology and geochemistry of the Águas Claras Quadrilátero Ferrífero, Minas Gerais, Brazil. Mineralium Deposita, 38(6): 751-774.

[132]

Su, Q.H., Jia, R.Y., Liu, X., and Wang, H., 2020. The ore controlling structural characteristics of Yangshan gold deposit and its enlightenment for the exploration of gold deposits in Mian-Lue tectonic mélange belt, West Qinling Orogen. Geological Bulletin of China, 39(8): 1204-1211 (in Chinese with English abstract).

[133]

Sugiono, D., LaFlamme, C., Thébaud, N., Martin, L., Savard, D., and Fiorentini, M., 2022. Fault-induced gold saturation of a single auriferous fluid is a key process for orogenic gold deposit formation. Economic Geology, 117: 1405-1414.

[134]

Tao, C.H., Guo, Z.K., Liang, J., Ding, T., Yang, W.F., Liao, S.L., Chen, M., Zhou, F., Chen, J., Wang, N.N., Liu, X.H., and Zhou, J.P., 2023. Sulfide metallogenic model on the ultraslow-spreading Southwest Indian Ridge. Science China Earth Sciences, 66(6): 1212-1230.

[135]

Taylor, D., Dalstra, H.J., Harding, A.E., Broadbent, G.C., and Barley, M.E., 2001. Genesis of high-grade hematite ore bodies of the Hamersley province, Western Australia. Economic Geology, 96(4): 837-873.

[136]

Twiss, R.J., and Moores, E.M., 2007. Structural Geology (2 ed.). New York: W.H. Freeman.

[137]

Veloso, E.E., Tardani, D., Elizalde, D., Godoy, B.E., Sanchez-Alfaro, P.A., Aron, F., Reich, M., and Morata, D., 2020. A review of the geodynamic constraints on the development and evolution of geothermal systems in the Central Andean Volcanic Zone (18-28° Lat.S). International Geology Review, 62(10): 1294-1318.

[138]

Wang, C.Y., Wei, B., Zhou, M.F., Minh, D.H., and Qi, L., 2018. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ~260 Ma Emeishan large igneous province, SW China and northern Vietnam. Journal of Asian Earth Sciences, 154: 162-186.

[139]

Wang, C.Y., Wei, B., Tan, W., Wang, Z., and Zeng, Q., 2021. The distribution, characteristics and fluid sources of lode gold deposits: An overview. Science China Earth Sciences, 64(9): 1463-1480.

[140]

Wang, C.Z., Li, X.F., and Yi, X.K., 2009. Gold mineralization during progressive deformation in Jinshan ductile shear zone, Jinshan gold deposit, Jiangxi province: Evidence from microscopic deformation structures. Journal of Guilin University of Technology, 29(2): 169-182 (in Chinese with English abstract).

[141]

Wang, E.D., Xia, J.M., Fu, J.F., Jia, S.S., and Men, Y.K., 2014a. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan-Benxi area, Northeastern China. Ore Geology Reviews, 57: 306-321.

[142]

Wang, Q.F., Deng, J., Zhao, H.S., Yang, L., Ma, Q.Y., ang Li, H.J., 2019. Review on orogenic gold deposits. Earth Science, 44(6): 2155-2186 (in Chinese with English abstract).

[143]

Wang, Q.F., Yang, L., Zhao, H.S., Groves, D.I., Weng, W.J., Xue, S.C., Li, H.J., Dong, C.Y., Yang, L.Q., Li, D.P., and Deng, J., 2022. Towards a universal model for orogenic gold systems: A perspective based on Chinese examples with geodynamic, temporal, and deposit-scale structural and geochemical diversity. Earth-Science Reviews, 224: 103861.

[144]

Wang, X.H., Hou, Z.Q., Song, Y.C., and Zhang, H.R., 2015. Geological, fluid inclusion and isotopic studies of the Baiyangping Pb-Zn-Cu-Ag polymetallic deposit, Lanping basin, Yunnan Province, China. Journal of Asian Earth Sciences, 111: 853-871.

[145]

Wang, X.J., Wang, Z.T., Wang, G.H., Meng, X.Z., Chen, S.N., Tao, H., and Liu, Y., 2014b. Ore-control structure analysis and significance of the Yangshan gold deposit, Gansu Province, China. Geological Survey and Research, 37(4): 256-271 (in Chinese with English abstract).

[146]

Weatherley, D.K., and Henley, R.W., 2013. Flash vaporization during earthquakes evidenced by gold deposits. Nature Geoscience, 6: 294-298.

[147]

Wegmann, C.E., 1935. Zur Deutung der Migmatite. Geologische Rundschau, 26: 305-350.

[148]

Wong, T.F., and Baud, P., 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44: 25-53.

[149]

Xu, D.R., Wang, Z.L., Cai, J.X., Wu, C.J., Bakun-Czubarow, N., Wang, L., Chen, H.Y., Baker, M.J., and Kusiak, M.A., 2013. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan province, South China. Ore Geology Reviews, 53: 318-342.

[150]

Xu, D.R., Wu, C.J., Lv, G.X., Zhou, Y.Q., Yu, L.L., Zhang, J.L., Hu, G.C., and Hou, M.Z., 2015. Application of lithospheric rheology in structural metallogenesis: Taking BIF-type iron-rich ore deposits as an example. Geotectonica et Metallogenia, 39(1): 93-109 (in Chinese with English abstract).

[151]

Xu, K.L., and Zhu, Z.C., 1987. Structural Geology (2 ed.). Beijing: Geological Publishing House (in Chinese).

[152]

Xue, C.J., Qi, S.J., and Wei, H.M., 2006. Mineral Deposits. Beijing: Geological Publishing House (in Chinese).

[153]

Yang, L., Wang, Q.F., Groves, D.I., Lu, S., Li, H.J., Wang, P., and Deng, J., 2021. Multiple orogenic gold mineralization events in a collisional orogen: Insights from an extruded terrane along the southeastern margin of the Tibetan Plateau. Journal of Structural Geology, 147: 104333.

[154]

Yang, L., Wang, Q.F., Zhao, S.Y., Li, H.J., Zhao, H.S., Dong, C.Y., Liu, X.F., and Deng, J., 2023. Structural controls on orogenic gold deposits. Acta Petrologica Sinica, 39(2): 277-292 (in Chinese with English abstract).

[155]

Yang, S.J., Wang, Q.F., Liu, X.F., Kan, Z.Y., Santosh, M., and Deng, J., 2022. Global spatio-temporal variations and metallogenic diversity of karst bauxites and their tectonic, paleogeographic and paleoclimatic relationship with the Tethyan realm evolution. Earth-Science Reviews, 233: 104184.

[156]

Yang, T.N., Yan, Z., Xue, C.D., Xin, D., and Dong, M.M., 2021. India indenting Eurasia: A brief review and new data from the Yongping basin on the SE Tibetan Plateau. Geosciences, 11: 518.

[157]

Yang, Z.M., and Cooke, D.R., 2019. Porphyry copper deposits in China. Society of Economic Geologists Special Publication, 22: 133-187.

[158]

Yao, S.Z., Ding, Z.J., and Zhou, Z.G., 2002. Primary discussion on orogenic metallogeny. Geological Science and Technology Information, 21(4): 1-6 (in Chinese with English abstract).

[159]

Ye, T.Z., Lu, Z.C., and Pang, Z.S., 2014. Theory and Method of Prospecting Prediction in Exploration Area. Beijing: Geological Publishing House (in Chinese).

[160]

Yuan, J.Q., Zhu, S.Q., and Zhai, Y.S., 1985. Mineral Deposits. Beijing: Geological Publishing House (in Chinese).

[161]

Yuan, S.D., Peng, J.T., Hu, R.Z., Li, H.M., Shen, N.P., and Zhang, D.L., 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43: 375-382.

[162]

Zeng, Z.X., and Fan, G.M., 2008. Structural Geology (3 ed.). Wuhan: China University of Geosciences Publishing House (in Chinese).

[163]

Zhai, Y.S., 1999. Regional Metallogenesis. Beijing: Geological Publishing House (in Chinese).

[164]

Zhai, Y.S., 2002. A brief retrospect and prospect of study on ore-forming structures. Geological Review, 48(2): 140-146 (in Chinese with English abstract).

[165]

Zhai, Y.S., and Lin, X.D., 1993. Ore Field Tectonics. Beijing: Geological Publishing House (in Chinese).

[166]

Zhang, B., Zhang, J.J., Chang, Z.F., Wang, X.X., Cai, F.L., and Lai, Q.Z., 2012. The Biluoxueshan transpressive deformation zone monitored by synkinematic plutons, around the eastern Himalayan syntaxis. Tectonophysics, 574-575: 158-180.

[167]

Zhang, B., Zhang, J.J., Liu, J., Wang, Y., Yin, C.Y., Guo, L., Zhong, D.L., Lai, Q.Z., and Yue, Y.H., 2014. The Xuelongshan high strain zone: Cenozoic structural evolution and implications for fault linkages and deformation along the Ailao Shan-Red River shear zone. Journal of Structural Geology, 69: 209-233.

[168]

Zhang, H.R., Yang, T.N., Song, Y.C., Hou, Z.Q., Yang, Z.S., Wang, Y.K., and Liu, Q., 2012. Discovery of paleo-karst type lead-zinc deposit in Qinghai-Tibetan Plateau and its significance: A case study of Chaqupacha deposit. Mineral Deposits, 31(3): 449-458 (in Chinese with English abstract).

[169]

Zhang, H.R., Yang, T.N., Hou, Z.Q., Song, Y.C., Liu, Y.C., Yang, Z.S., and Tian, S.H., 2017. Structural controls on carbonate-hosted Pb-Zn mineralization in the Dongmozhazhua deposit, central Tibet. Ore Geology Reviews, 90: 863-876.

[170]

Zhang, H.R., Hou, Z.Q., Yang, Z.M., Song, Y.C., Liu, Y.C., and Chai, P., 2020. A new division of genetic types of cobalt deposits: Implications for Tethyan cobalt-rich belt. Mineral Deposits, 39(3): 501-510 (in Chinese with English abstract).

[171]

Zhang, H.R., Hou, Z.Q., Rolland, Y., and Santosh, M., 2022. The cold and hot collisional orogens: Thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts. Ore Geology Reviews, 141: 104671.

[172]

Zhang, J.R., Wen, H.J., Qiu, Y.Z., Zou, Z.C., Du, S.J., and Wu, S.Y., 2015. Spatial-temporal evolution of ore-forming fluids and related mineralization in the western Lanping basin, Yunnan province, China. Ore Geology Reviews, 67: 90-108.

[173]

Zhang, Y., Robinson, J., and Schaubs, P.M., 2011. Numerical modelling of structural controls on fluid flow and mineralization. Geoscience Frontiers, 2(3): 449-461.

[174]

Zhao, H.S., Wang, Q.F., Kendrick, M.A., Groves, D.I., Fan, T., and Deng, J., 2022. Metasomatized mantle lithosphere and altered ocean crust as a fluid source for orogenic gold deposits. Geochimica et Cosmochimica Acta, 334: 316-337.

[175]

Zhao, Y.D., Zhang, W.G., Liu, H., and Liu, X.C., 2024. The spatial and temporal evolution of thermal stress after granite emplacement and its influencing factors. Journal of Geomechanics, 30(1): 38-56 (in Chinese with English abstract).

[176]

Zhao, Y.M., Lin, W.W., Bi, C.S., Li, D.X., and Jiang, C.J., 1990. Skarn Deposits in China. Beijing: Geological Publishing House (in Chinese).

[177]

Zhao, Y.M., Feng, C.Y., and Li, D.X., 2017. New progress in prospecting for skarn deposits and spatial-temporal distribution of skarn deposits in China. Mineral Deposits, 36(3): 519-543. (in Chinese with English abstract).

[178]

Zhao, Y.Y., Nie, F.J., Hou, Z.Q., Li, Z.Q., Zhao, X.T., and Ma, Z.B., 2006. Isotope characteristics and formation process of hot spring type cesium deposit in Targejia, Tibet. Mineral Deposits, 25(5): 613-619 (in Chinese with English abstract).

[179]

Zheng, Y.D., Zhang, Q., and Hou, Q.L., 2015. Deformation localization: A review on the maximum-effective-moment (MEM) criterion. Acta Geologica Sinica (English Edition), 89(4): 1133-1152.

[180]

Zhong, Z.Q., and You, Z.D., 1995. Compositional variation and volume loss of a shear zone: Hetai shear zone as a case history. Chinese Science Bulletin, 40(19): 1638-1641.

[181]

Zhou, M.F., Chen, W.T., Wang, C.Y., Prevec, S.A., Liu, P.P., and Howarth, G.H., 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4: 481-502.

[182]

Zhou, Q., Du, Y.S., and Qin, Y., 2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model: A case study of “Datangpo type” manganese deposits formed in rift basin of Nanhua period along Guizhou-Hunan-Chongqing border area. Mineral Deposits, 32(3): 457-466 (in Chinese with English abstract).

[183]

Zoheir, B.A., 2008. Structural controls, temperature-pressure conditions and fluid evolution of orogenic gold mineralization at the Betam mine, south Eastern Desert, Egypt. Mineralium Deposita, 43(1): 79-95.

RIGHTS & PERMISSIONS

2025 The Author(s). Acta Geologica Sinica (English Edition) published by John Wiley & Sons Australia, Ltd on behalf of Geological Society of China.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/