Cenozoic Vertically-tearing of Indian Slab Modified the Asian Lithosphere beneath the Eastern Tibetan Plateau

Zengqian HOU , Bo XU , Tiannan YANG , Haijiang ZHANG , Nian YU , Yi ZHAO , Zhuang MIAO

Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (3) : 627 -633.

PDF
Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (3) : 627 -633. DOI: 10.1111/1755-6724.15313
Original Article

Cenozoic Vertically-tearing of Indian Slab Modified the Asian Lithosphere beneath the Eastern Tibetan Plateau

Author information +
History +
PDF

Abstract

A subducted continental slab is sometimes torn during collision, yet the exact impact of slab-tearing on the overlying lithosphere remains unclear. Here, we image the structure and architecture of the Asian lithosphere above the Indian slab in the eastern Tibetan Plateau using multiscale seismic tomography models and zircon Hf isotopic mapping, respectively. Our mantle Vp model shows that a large low-velocity anomaly extends laterally beneath the thinned Asian lithosphere above the tear zone roughly along the 26°N. The Vs images, magmatic records and Hf isotopic mapping indicate that this low-velocity anomaly recorded an asthenosphere flow eastward along the tear zone, which thermally eroded and refertilized the overlying Asian lithosphere, leading to the lithospheric melting, thinning and root delaminating. The vertical tear also generated a tectonic weak zone with associated Cenozoic potassic and carbonatitic magma suites. We argue that such a hot lithosphere discontinuity provided a reasonable mechanism for the abrupt change of crust thickness and the transformation of crust-mantle deformation from coupling to decoupling across the tear zone.

Keywords

slab-tearing / lithosphere architecture / asthenosphere flow / Tibetan Plateau

Cite this article

Download citation ▾
Zengqian HOU, Bo XU, Tiannan YANG, Haijiang ZHANG, Nian YU, Yi ZHAO, Zhuang MIAO. Cenozoic Vertically-tearing of Indian Slab Modified the Asian Lithosphere beneath the Eastern Tibetan Plateau. Acta Geologica Sinica (English Edition), 2025, 99(3): 627-633 DOI:10.1111/1755-6724.15313

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An, M.J., and Shi, Y.L., 2006. Lithospheric thickness of the Chinese continent. Physics of the Earth and Planetary Interiors, 159(3-4): 257-266.

[2]

Andrić-Tomašević, N., Koptev, A., Maiti, G., Gerya, T., and Ehlers, T.A., 2023. Slab tearing in non-collisional settings: Insights from thermo-mechanical modelling of oblique subduction. Earth and Planetary Science Letters, 610: 118097.

[3]

Chang, L.J., Flesch, L.M., Wang, C.Y., and Ding, Z.F., 2015. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS, Quaternary fault slip rates, and shear wave splitting data. Geophysical Research Letters, 42(14): 5813-5819.

[4]

Chen, Y., Li, W., Yuan, X.H., Badal, J., and Teng, J.W., 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth and Planetary Science Letters, 413: 13-24.

[5]

Dickinson, W.R., and Snyder, W.S., 1979. Geometry of subducted slabs related to San Andreas transform. The Journal of Geology, 87(6): 609-627.

[6]

Gan, W.J., Molnar, P., Zhang, P.Z., Xiao, G.R., Liang, S.M., Zhang, K.L., Li, Z.J., Xu, K.K., and Zhang, L., 2022. Initiation of clockwise rotation and eastward transport of southeastern Tibet inferred from deflected fault traces and GPS observations. GSA Bulletin, 134(5-6): 1129-1142.

[7]

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O'Reilly, S.Y., and Shee, S.R., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147.

[8]

Gudfinnsson, G.H., and Presnall, D.C., 2005. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. Journal of Petrology, 46(8): 1645-1659.

[9]

Hale, A.J., Gottschaldt, K.D., Rosenbaum, G., Bourgouin, L., Bauchy, M., and Mühlhaus, H., 2010. Dynamics of slab tear faults: Insights from numerical modelling. Tectonophysics, 483(1-2): 58-70.

[10]

Han, S.C., Zhang, H.J., Gao, L., Liu, Y., Chai, C.P., and Maceira, M., 2022. Joint inversion of body wave arrival times, surface wave dispersion data and receiver functions: Method and application to South China. Journal of Geophysical Research: Solid Earth, 127(9): e2022JB024083.

[11]

Hou, Z.Q., Zhao, Z.D., Gao, Y.F., Yang, Z.M., and Jiang, W., 2006. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcanomagmatic rocks in south Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract).

[12]

Hou, Z.Q., Zhou, Y., Wang, R., Zheng, Y.C., He, W.Y., Zhao, M., Evans, N.J., and Weinberg, R.F., 2017. Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 45(6): 563-566.

[13]

Hou, Z.Q., Wang, Q.F., Zhang, H.J., Xu, B., Yu, N., Wang, R., Groves, D.I., Zheng, Y.C., Han, S., Gao, L., and Yang, L., 2023a. Lithosphere architecture characterized by crust-mantle decoupling controls the formation of orogenic gold deposits. National Science Review, 10(3): nwac257.

[14]

Hou, Z.Q., Wang, R., Zhang, H.J., Zheng, Y.C., Jin, S., Thybo, S.H., Weinberg, R.F., Xu, B., Yang, Z.M., Hao, A.W., Gao, L., and Zhang, L.T., 2023b. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian Plate. Earth-Science Reviews, 243: 104482.

[15]

Hou, Z.Q., Xu, B., Zhang, H.J., Zheng, Y.C., Wang, R., Liu, Y., Miao, Z., Gao, L., Zhao, Z.D., Griffin, W.L., and O'Reilly, S.Y., 2023c. Refertilized continental root controls the formation of the Mianning-Dechang carbonatite-associated rare-earth-element ore system. Communications Earth & Environment, 4: 293. https://doi.org/10.1038/s43247-023-00956-6.

[16]

Hou, Z.Q., Liu, L.J., Zhang, H.J., Xu, B., Wang, Q.F., Yang, T.N., Wang, R., Zheng, Y.C., Li, Y.C., Gao, L., Yu, N., Wang, X.L., Miao, Z., Han, S.C., and Lü, Q.T., 2024. Cenozoic eastward growth of the Tibetan Plateau controlled by tearing of the Indian slab. Nature Geoscience, 17(3): 255-263.

[17]

Hu, J.F., Yang, H.Y., Li, G.Q., and Peng, H.C., 2015. Seismic upper mantle discontinuities beneath Southeast Tibet and geodynamic implications. Gondwana Research, 28(3): 1032-1047.

[18]

Kemp, A.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., and Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983.

[19]

Kong, F., Wu, J., Liu, L., Liu, K.H., Song, J., Li, J., and Gao, S.S., 2018. Azimuthal anisotropy and mantle flow underneath the southeastern Tibetan Plateau and northern Indochina Peninsula revealed by shear wave splitting analyses. Tectonophysics, 747: 68-78.

[20]

Lev, E., Long, M.D., and van der Hilst, R.D., 2006. Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth and Planetary Science Letters, 251(3-4): 293-304.

[21]

Li, C., van der Hilst, R.D., Meltzer, A.S., and Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 274(1-2): 157-168.

[22]

Li, J., and Song, X., 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8296-8300.

[23]

Mole, D.R., Fiorentini, M.L., Thebaud, N., Cassidy, K.F., Campbell McCuaig, T.C., Kirkland, C.L., Romano, S.S., Doublier, M.P., Belousova, E.A., Barnes, S.J., and Miller, J., 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences of the United States of America, 111(28): 10083-10088.

[24]

Pesicek, J.D., Zhang, H., and Thurber, C.H., 2014. Multiscale seismic tomography and earthquake relocation incorporating differential time data: Application to the Maule subduction zone, Chile. The Bulletin of the Seismological Society of America, 104(2): 1037-1044.

[25]

Rosenbaum, G., Gasparon, M., Lucente, F.P., Peccerillo, A., and Miller, M.S., 2008. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism. Tectonics, 27(2): 2007TC002143.

[26]

Wang, J.H., Yin, A., Harrison, T.M., Grove, M., Zhang, Y.Q., and Xie, G.H., 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters, 188(1-2): 123-133.

[27]

Wang, J., Wang, Q., Xu, C.B., Dan, W., Xiao, Z., Shu, C., and Wei, G., 2022. Cenozoic delamination of the southwestern Yangtze craton owing to densification during subduction and collision. Geology, 50(8): 912-917.

[28]

Wortel, M.J.R., and Spakman, W., 2000. Subduction and slab detachment in the Mediterranean-Carpathian region. Science, 290(5498): 1910-1917.

[29]

Xu, B., Hou, Z.Q., Griffin, W.L., Zheng, Y.C., Wang, T., Guo, Z., Hou, J., Santosh, M., and O'Reilly, S.Y., 2021. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Science Reviews, 214: 103472.

[30]

Xu, M., Huang, Z., Wang, L., Xu, M., Zhang, Y., Mi, N., Yu, D., and Yuan, X., 2020. Sharp lateral Moho variations across the SE Tibetan margin and their implications for plateau growth. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018117.

[31]

Xu, Y.G., Lan, J.B., Yang, Q.J., Huang, X.L., and Qiu, H.N., 2008. Eocene break-off of the Neo-Tethyan slab as inferred from intraplate-type mafic dykes in the Gaoligong orogenic belt, eastern Tibet. Chemical Geology, 255(3-4): 439-453.

[32]

Yang, T., Dong, M., Xue, C., Xin, D., and Liang, M., 2023. Coherent chemical variation trends of the 55: 25 Ma magmatic rocks in SE Tibet: N-S direction lithospheric stretching of Eurasia during early stage of India: Eurasia collision. Acta Geologica Sinica (English Edition), 97(5): 1283-1305.

[33]

Yao, J., Liu S., Wei S., Hubbard, J., Huang, B.S., Chen, M., and Tong, P., 2021. Slab models beneath central Myanmar revealed by a joint inversion of regional and teleseismic traveltime data. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020164.

[34]

Yin, A., and Harrison, T.M., 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280.

[35]

Yu, N., Unsworth, M., Wang, X., Li, D., Wang, E., Li, R., Hu, Y., and Cai, X., 2020. New insights into crustal and mantle flow beneath the Red River fault zone and adjacent areas on the southern margin of the Tibetan Plateau revealed by a 3-D magnetotelluric study. Journal of Geophysical Research (Solid Earth), 125(10): e2020JB019396.

RIGHTS & PERMISSIONS

2025 The Author(s). Acta Geologica Sinica (English Edition) published by John Wiley & Sons Australia, Ltd on behalf of Geological Society of China.

AI Summary AI Mindmap
PDF

15

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/