Rock Magnetic Evidence for the Seismogenic Environment of Large Earthquakes in the Motuo Fault Zone, Eastern Himalayan Syntaxis

Yong CAO , Zhiming SUN , Yang GAO , Jian LIU , Bin LI , Yuhan YANG , Hao YE , Peng XU

Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (3) : 896 -907.

PDF
Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (3) : 896 -907. DOI: 10.1111/1755-6724.15297
Original Article

Rock Magnetic Evidence for the Seismogenic Environment of Large Earthquakes in the Motuo Fault Zone, Eastern Himalayan Syntaxis

Author information +
History +
PDF

Abstract

Knowledge of the seismogenic environment of fault zones is critical for understanding the processes and mechanisms of large earthquakes. We conducted a rock magnetic study of the fault rocks and protoliths to investigate the seismogenic environment of earthquakes in the Motuo fault zone, in the eastern Himalayan syntaxis. The results indicate that magnetite is the principal magnetic carrier in the fault rocks and protolith, while the protolith has a higher content of paramagnetic minerals than the fault rocks. The fault rocks are characterized by a high magnetic susceptibility relative to the protolith in the Motuo fault zone. This is likely due to the thermal alteration of paramagnetic minerals to magnetite caused by coseismic frictional heating with concomitant hydrothermal fluid circulation. The high magnetic susceptibility of the fault rocks and neoformed magnetite indicate that large earthquakes with frictional heating temperatures >500°C have occurred in the Motuo fault zone in the past, and that the fault maintained an oxidizing environment with weak fluid action during these earthquakes. Our results reveal the seismogenic environment of the Motuo fault zone, and they are potentially important for the evaluation of the regional stability in the eastern Himalayan syntaxis.

Keywords

rock magnetism / frictional heating / seismogenic environment / Motuo fault zone / eastern Himalayan syntaxis

Cite this article

Download citation ▾
Yong CAO, Zhiming SUN, Yang GAO, Jian LIU, Bin LI, Yuhan YANG, Hao YE, Peng XU. Rock Magnetic Evidence for the Seismogenic Environment of Large Earthquakes in the Motuo Fault Zone, Eastern Himalayan Syntaxis. Acta Geologica Sinica (English Edition), 2025, 99(3): 896-907 DOI:10.1111/1755-6724.15297

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen, P., Shu, S., Li, B., Gao, Y., Cao, Y., and Chen, X., 2024. Structural features and Holocene activity of the Motuo fault zone, eastern Himalaya syntaxis. Journal of Asian Earth Sciences, 271: 106221.

[2]

Chen, W.M.D., Tanaka, H., Huang, H.J., Lu, C.B., Lee, C.Y., and Wang, C.Y., 2007. Fluid infiltration associated with seismic faulting: Examining chemical and mineralogical compositions of fault rocks from the active Chelungpu fault. Tectonophysics, 443(3-4): 243-254.

[3]

Chou, Y.M., Song, S.R., Aubourg, C., Song, Y.F., Boullier, A.M., Lee, T.Q., Evans, M., Yeh, E.C., and Chen, Y.M., 2012a. Pyrite alteration and neoformed magnetic minerals in the fault zone of the Chi-Chi earthquake (Mw 7.6, 1999): Evidence for frictional heating and co-seismic fluids. Geochemistry, Geophysics, Geosystems, 13: Q08002.

[4]

Chou, Y.M., Song, S.R., Aubourg, C., Lee, T.Q., Boullier, A.M., Song, Y.F., Yeh, E.C., Kuo, L.W., and Wang, C.Y., 2012b. An earthquake slip zone is a magnetic recorder. Geology, 40(6): 551-554.

[5]

Day, R., Fuller, M., and Schmidt, V., 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4): 260-267.

[6]

Deseta, N., Andersen, T.B., and Ashwal, L.D., 2014. A weakening mechanism for intermediate-depth seismicity? Detailed petrographic and microtextural observations from blueschist facies pseudotachylytes, Cape Corse, Corsica. Tectonophysics, 610: 138-149.

[7]

Ding, L., Zhong, D., Yin, A., Kapp, P., and Harrison, T.M., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth and Planetary Science Letters, 192: 423-438.

[8]

Dunlop, D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc): 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research: Solid Earth, 107(B3): 2057.

[9]

Ferré, E.C., Zechmeister, M.S., Geissman, J.W., MathanaSekaran, N., and Kocak, K., 2005. The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for coseismic electrical currents. Tectonophysics, 402(1-4): 125-139.

[10]

Ferré, E.C., Geissman, J.W., and Zechmeister, M.S., 2012. Magnetic properties of fault pseudotachylytes in granites. Journal of Geophysical Research, 117: B01106.

[11]

Ferré, E.C., Meado A.L., Geissman, J.W., Di Toro, G., Spagnuolo, E., Ueda, T., Ashwal, L.D., Deseta, N., Andersen, T.B., Filiberto, J., and Conder, J.A., 2017. Earthquakes in the mantle? Insights from rock magnetism of pseudotachylytes. Journal of Geophysical Research: Solid Earth, 122(11): 8769-8785.

[12]

Fukuchi, T., 2003. Strong ferrimagnetic resonance signal and magnetic susceptibility of the Nojima pseudotachylyte in Japan and their implication for coseismic electromagnetic changes. Journal of Geophysical Research, 108(B6): 2312.

[13]

Fukuchi, T., Mizoguchi, K., and Shimamoto, T., 2005. Ferrimagnetic resonance signal produced by frictional heating: A new indicator of paleoseismicity. Journal of Geophysical Research, 110: B12404.

[14]

Gao, S., Yin, Y., Li, B., Gao, Y., Zhang, N., Zhang, T., Gao, H., and Liu, X., 2024. Dynamic characteristics of the long runout rock-ice avalanche at high altitude—A case from the Zelongnong Basin, Eastern Himalayan Syntaxis, China. Acta Geologica Sinica (English Edition), 98(5): 1376-1393.

[15]

Grosz, S., Matthews, A., Ilani, S., Ayalon, A., and Garfunkel, Z., 2006. Iron mineralization and dolomitization in the Paran Fault zone, Israel: Implications for low-temperature basinal fluid processes near the Dead Sea Transform. Geofluids, 6(2): 137-153.

[16]

Guichet, X., Jounizux, L., and Catal, N., 2006. Modification of streaming potential by precipitation of calcite in a sand-water system: Laboratory measurements in the pH range from 4 to 12. Geophysical Journal International, 166(1): 445-460.

[17]

Henry, B., 2007. Magnetic mineralogy, changes due to heating, in Encyclopedia of Geomagnetism and Paleomagnetism. Gubbins D, Herrero-Bervera E. Springer-Verlag, 512-515.

[18]

Hickman, S., Sibson, R., and Bruhn, R., 1995. Introduction to special section: Mechanical involvement of fluids in faulting. Journal of Geophysical Research: Solid Earth, 100(B7): 12831-12840.

[19]

Hirono, T., Lin, W., Yeh, E. C., Soh, W., Hashimoto, Y., Sone, H., Matsubayashi, O., Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S.R., Ma, K.F., Hung, J.H., Wang, C.Y., and Tsai, Y.B., 2006. High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP. Geophysical Research Letters, 33: L15303.

[20]

Hirono, T., Ujiie, K., Ishikawa, T., Mishima, T., Hamada, Y., Tanimizu, M., Soh, W., and Kinoshita, M., 2009. Estimation of temperature rise in a shallow slip zone of the megasplay fault in the Nankai Trough. Tectonophysics, 478(3-4): 215-220.

[21]

Ishikawa, T., Tanimizu, M., Nagaishi, K., Matsuoka, J., Tadai, O., Sakaguchi, M., Horono, T., Mishima, T., Tanikawa, W., Lin, W.R., Kikuta, H., Soh, W., and Song, S.R., 2008. Coseismic fluid-rock interactions at high temperatures in the Chelungpu fault. Nature Geoscience, 1(10): 679-683.

[22]

Kuo, L.W., Song, S.R., Yeh, E.C., and Chen, H.F., 2009. Clay mineral anomalies in the fault zone of Chelungpu Fault, Taiwan, and its implication. Geophysical Research Letters, 36: L18306.

[23]

Li, B.K., Diao, G.L., Xu, X.W., Wan, Y.G., Feng, X.D., Zou, L.Y., and Miao, C.L., 2015. Redetermination of the source parameters of the Zayü, Tibet M8.6 earthquake sequence in 1950. Chinese Journal of Geophysics, 58(11): 4254-4265 (in Chinese with English abstract).

[24]

Li, K., Xu, X.W., Kirby, E., Tang, F.T., and Kang, W.J., 2018. Late Quaternary paleoseismology of the Milin fault: Implications for active tectonics along the Yarlung Zangbo Suture, Southeastern Tibet Plateau. Tectonophysics, 731: 64-72.

[25]

Liu, D., Li, H., Lee, T.Q., Chou Y.M., Song, S.R., Sun, Z., Chevalier, M.L., and Si, J., 2014. Primary rock magnetism for the Wenchuan earthquake fault zone at Jiulong outcrop, Sichuan Province, China. Tectonophysics, 619-620: 58-69.

[26]

Liu, D., Li, H., Lee, T.Q., Sun, Z., Liu, J., Han, L., and Chevalier, M.L., 2016. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (Mw 7.9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115: 468-479.

[27]

Maxbauer, D.P., Feinberg, J.M., and Fox, D.L., 2016. MAX UnMix: A web application for unmixing magnetic coercivity distributions. Computers & Geosciences, 95: 140-145.

[28]

Mishima, T., Hirono, T., Soh, W., and Song, S.R., 2006. Thermal history estimation of the Taiwan Chelungpu fault using rock-magnetic methods. Geophysical Research Letters, 33: L23311.

[29]

Mishima, T., Hirono, T., Nakamura, N., Tanikawa, W., Soh, W., and Song, S.R., 2009. Changes to magnetic minerals caused by frictional heating during the 1999 Taiwan Chi-Chi earthquake. Earth, Planets and Space, 61(6): 797-801.

[30]

Murad, E., and Wagner, U., 1998. Clays and clay minerals: The firing process. Hyperfine Interactions, 117(1-4): 337-356.

[31]

Niwa, M., Mizuochi, Y., and Tanase, A., 2015. Changes in chemical composition caused by water-rock interactions across a strike-slip fault zone: Case study of the Atera Fault, Central Japan. Geofluids, 15(3): 387-409.

[32]

Pan, Y.X., Zhu, R.X., Banerjee, S.K., Gill, J., and Williams, Q., 2000. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. Journal of Geophysical Research, 105(B1): 783-794.

[33]

Pei, J.L., Zhou, Z.Z., Dong, S.G., and Tang, L., 2014. Magnetic evidence revealing frictional heating from fault rocks in granites. Tectonophysics, 637: 207-217.

[34]

Steltenpohl, M.G., Kassos, G., and Andresen, A., 2006. Retrograded eclogite-facies pseudotachylytes as deep-crustal paleoseismic faults within continental basement of Lofoten, north Norway. Geosphere, 2(1): 61-72.

[35]

Sun, Z.M., Geng, Q.R., Lou, X.Y., Zheng, L.L., Li, S., and Liao, G.Y., 2004. The subdivision of the Namjagbarwa Group complex within the eastern Himalayan Syntaxis, Xizang. Sedimentary Geology and Tethyan Geology, 24(2): 8-15 (in Chinese with English abstract).

[36]

Tanikawa, W., Mishima, T., Hirono, T., Lin, W., Shimamoto, T., Soh, W., and Song, S.R., 2007. High magnetic susceptibility produced in high-velocity frictional tests on core samples from the Chelungpu fault in Taiwan. Geophysical Research Letters, 34: L15304.

[37]

Tanikawa, W., Mishima, T., Hirono, T., Soh, W., and Song, S.R., 2008. High magnetic susceptibility produced by thermal decomposition of core samples from the Chelungpu fault in Taiwan. Earth and Planetary Science Letters, 272(1-2): 372-381.

[38]

Ueda, T., Obata, M., Di Toro, G., Kanagawa, K., and Ozawa, K., 2008. Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies. Geology, 36(8): 607-610.

[39]

Wang, X.N., Tang, F.T., and Shao, C.R., 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275 (in Chinese with English abstract).

[40]

Xie, C., Zhou, B.G., Yang, F., Li, Z.F., Cui, Y.J., Wang, W., and Li, W., 2021. Geological and geomorphological evidence for activity along the Motuo Fault, eastern side of the Namche Barwa Syntaxis, Tibetan Plateau. Seismological Research Letters, 92: 2196-2205.

[41]

Xu, Z.Q., Cai, Z.H., Zhang, Z.M., Li, H.Q., Chen, F.Y., and Tang, Z.M., 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1463-1476 (in Chinese with English abstract).

[42]

Yan, X., Zhang, B., Wang, G., Yang, T., and Chen, J., 2023. Coseismic frictional heating with concomitant hydrothermal fluid circulation revealed by rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan earthquake, China. Geochemistry, Geophysics, Geosystems, 24: e2023GC011223.

[43]

Yang, T., Chen, J.Y., Wang, H.Q., and Jin, H.Q., 2012a. Magnetic properties of fault rocks from the Yingxiu-Beichuan fault: Constraints on temperature rise within the shallow slip zone during the 2008 Wenchuan Earthquake and their implications. Journal of Asian Earth Sciences, 50: 52-60.

[44]

Yang, T., Chen, J.Y., Wang, H.Q., and Jin, H.Q., 2012b. Rock magnetic properties of fault rocks from the rupture of the 2008 Wenchuan Earthquake, China and their implications: Preliminary results from the Zhaojiagou outcrop, Beichuan County (Sichuan). Tectonophysics, 530-531: 331-341.

[45]

Yang, T., Dekkers, M. J., and Zhang, B., 2016b. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: Evidence from a preliminary rock magnetic ‘geothermometer’. Geophysical Journal International, 205(1): 319-331.

[46]

Yang, T., Yang, X., Duan, Q., Chen, J., and Dekkers, M.J., 2016a. Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China). Geochemistry, Geophysics, Geosystems, 17: 1065-1085.

[47]

Yang, T., Chou, Y.M., Ferré, E.C., Dekkers, M.J., Chen, J., Yeh, E.C., and Tanikawa, W., 2020. Faulting processes unveiled by magnetic properties of fault rocks. Reviews of Geophysics, 58: e2019RG000690.

[48]

Ying, Z., Song, Y., Zhu, K., Wu, G., Ju, Y., Wei, Q., and Ren, X., 2022. A cleaner and sustainable method to recover vanadium and chromium from the leaching solution based on solvent extraction. Journal of Environmental Chemical Engineering, 10(3): 107384.

[49]

Zeng, Y.S., Ai, R.Y., and Ai, Y.F., 1994. Interaction between plagioclase and NaCl hydrothermal solutions an experimental study. Acta Mineralogica Sinica, 14(1): 40-45 (in Chinese with English abstract).

[50]

Zhang, L., Sun, Z.M., Li, H.B., Zhao, L.S., Song, S.R., Chou, Y.M., Cao, Y., Ye, X.Z., Wang, H., and He, X.L., 2017. Rock record and magnetic response to large earthquakes within Wenchuan Earthquake Fault Scientific Drilling cores. Geochemistry, Geophysics, Geosystems, 18: 1889-1906.

[51]

Zhang, L., Li, H.B., Sun, Z.M., Chou, Y.M., Cao, Y., Wang, H., Ye, X.Z., and He, X.L., 2018a. Rock magnetic evidence for the seismogenic setting of large earthquakes in the Longmen Shan faule zone. Chinese Journal of Geophysics, 61(5): 1715-1727 (in Chinese with English abstract).

[52]

Zhang, L., Li, H.B., Sun, Z.M., Chou, Y.M., Cao, Y. and Wang, H., 2018b. Metallic iron formed by melting: A new mechanism for magnetic highs in pseudotachylyte. Geology, 46(9): 779-782.

[53]

Zhang, L., Li, H.B., Sun, Z.M., Ge, C.L., Ye, X.Z., Cao, Y., and Zheng, Y., 2023. Rock magnetic characteristics of the Wenchuan-Maoxian fault zone of the Longmen Shan fault and its earthquake faulting characteristics. Acta Petrologica Sinica, 39(12): 3817-3832 (in Chinese with English abstract).

[54]

Zhang, Z.M., Wang, J.L., Zhao, G.C., and Shi, C., 2008. Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan Syntaxis. Acta Petrologica Sinica, 24(7): 1477-1487 (in Chinese with English abstract).

[55]

Zhong, N., Guo, C.B., Huang, X.L., Wu, R.A., Ding, Y.Y., Zhang, X.B., and Li, H.B., 2021. Late Quaternary activity and paleoseismic records of the middle south section of the Jiali-Chayu fault. Acta Geologica Sinica, 95(12): 3642-3659 (in Chinese with English abstract).

[56]

Zhu, H.L., Qu, X.Y., Liu, L., Yu, Z.C., Zhang, L.D., and Tang, H., 2011. Study on interaction between the feldspar and CO2 fluid. Journal of Jilin University (Earth Science Edition), 41(3): 697-706. (in Chinese with English abstract).

[57]

Zoback, M.D., Hickman, S., and Ellsworth, W., 2007. The role of fault zone drilling. Treatise on Geophysics, 4: 649-674.

RIGHTS & PERMISSIONS

2025 The Author(s). Acta Geologica Sinica (English Edition) published by John Wiley & Sons Australia, Ltd on behalf of Geological Society of China.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/