Crustal Thickness Evolution Controls the Formation of Porphyry Cu Deposits in Collisional Orogens: An Example from Central Tethys

Xuhui WANG , Xinghai LANG , Changyi WU , Yulin DENG , Robert MORITZ

Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (2) : 522 -531.

PDF
Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (2) : 522 -531. DOI: 10.1111/1755-6724.15283
Original Article

Crustal Thickness Evolution Controls the Formation of Porphyry Cu Deposits in Collisional Orogens: An Example from Central Tethys

Author information +
History +
PDF

Abstract

The key factor that controls the genesis of porphyry Cu deposits (PCDs) in collisional orogens remains a debated topic. This study employs whole-rock La/Yb proxies to quantitatively constrain the spatial and temporal variations in crustal thickness of the South Armenian–Iranian magmatic belt (SAIMB) within the Zagros orogen (central Tethys region) since the Eocene. Our results show that rapid crustal thickening occurred first in the NW section of the SAIMB at ~35 Ma, then propagated southeastward into the central and SE sections at ~25 Ma and 20 Ma, respectively, indicating that the Arabia–Eurasia collision was diachronous. The formation of the large and giant collision-related PCDs in the SAIMB might have been controlled by the collision process because they developed first in the NW section of the SAIMB and subsequently propagated southeastward into the central and SE sections. More importantly, crustal thickness mapping shows that the PCDs are preferentially developed in the thickened crust areas (>50 km). Our findings propose that thickened crust is critical for the formation of the PCDs in collisional orogens by promoting Fe2+-rich minerals as a fractionating phase, driving magmatic auto-oxidation and releasing Cu into the magmas. The Cu is then partitioned into magmatic fluids, sustaining the porphyry systems. Furthermore, our research highlights that the thickened crust hosting PCDs was characterized by a previously thinner crust (<40 km), where magmas had low oxygen fugacity due to the absence of the auto-oxidation process. Consequently, chalcophile elements (e.g., Cu) efficiently separated from the melt through sulfide segregation, forming large Cu-bearing lower-crustal cumulates. These cumulates can be mobilized with an increase in oxygen fugacity, incorporating into subsequent porphyry mineralization. We thus propose that the crustal thickness evolution over time controls the formation of the PCDs in collisional orogens. There are two essential stages in the collision-related PCDs formation: the first is high-flux magmatism in the thin crustal setting (<40 km), leading to metal-fertilized lower crust through sulfide segregation, and the second is the intracrustal auto-oxidation during crustal thickening (>50 km) which facilitates pre-enriched sulfides in the lower crust to re-dissolve, releasing Cu into the magmas.

Keywords

porphyry Cu deposit / crustal thickness / pre-enrichment / Arabia–Eurasia collision / Tethyan metallogenic belt

Cite this article

Download citation ▾
Xuhui WANG, Xinghai LANG, Changyi WU, Yulin DENG, Robert MORITZ. Crustal Thickness Evolution Controls the Formation of Porphyry Cu Deposits in Collisional Orogens: An Example from Central Tethys. Acta Geologica Sinica (English Edition), 2025, 99(2): 522-531 DOI:10.1111/1755-6724.15283

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., and Wortel, R., 2011. Zagros orogeny: A subduction-dominated process. Geological Magazine, 148(5-6): 692-725.

[2]

Aghazadeh, M., Hou, Z., Badrzadeh, Z., and Zhou, L., 2015. Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70: 385-406.

[3]

Alonso-Perez, R., Müntener, O., and Ulmer, P., 2009. Igneous garnet and amphibole fractionation in the roots of island arcs: Experimental constraints on andesitic liquids. Contributions to Mineralogy and Petrology, 157(4): 541-558.

[4]

Asadi, S., Moore, F., and Zarasvandi, A., 2014. Discriminating productive and barren porphyry copper deposits in the southeastern part of the central Iranian volcano-plutonic belt Kerman region Iran: A review. Earth Science Reviews, 138: 25-46.

[5]

Chaharlang, R., Ducea, M.N., and Ghalamghash, J., 2020. Geochemical evidences for quantifying crustal thickness over time in the Urumieh-Dokhtar magmatic arc (Iran). Lithos, 374: 105723.

[6]

Chapman, J.B., Ducea, M.N., DeCelles, P.G., and Profeta, L., 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919-922.

[7]

Chiaradia, M., 2014. Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience, 7 (1): 43-46.

[8]

Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M., and Iizuka, Y., 2013. Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162: 70-87.

[9]

Chiu, H.Y., Chung, S.L., Zarrinkoub, M.H., Melkonyan, R., Pang, K.N., Lee, H.Y., Wang, K.L., Mohammadi, S.S., and Khatib, M.M., 2017. Zircon Hf isotopic constraints on magmatic and tectonic evolution in Iran: Implications for crustal growth in the Tethyan orogenic belt. Journal of Asian Earth Science, 145: 652-669.

[10]

Clark, A.H., 1993. Are outsized porphyry copper deposits either anatomically or environmentally distinctive? Society of Economic Geology, Special Publication, 2: 213-282.

[11]

Cooke, D.R., Hollings, P., and Walsh, J.L., 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818.

[12]

Darin, M.H., and Umhoefer, P.J., 2022. Diachronous initiation of Arabia-Eurasia collision from eastern Anatolia to the southeastern Zagros Mountains since middle Eocene time. International Geology Review, 64(18): 2653-2681.

[13]

Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, Q.Z., Wang, H.Q., Spicer, T.E.V., and Yue, Y.H., 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45(3): 215-218.

[14]

Grosjean, M., Motitz, R., Rezeau, H., Hovakimyan, S., Ulianov, A., Chiaradia, M., and Melkonyan, R., 2022. Arabia-Eurasia convergence and collision control on Cenozoic juvenile K-rich magmatism in the South Armenian block Lesser Caucasus. Earth-Science Reviews, 226: 103949.

[15]

Hassanpour, S., Alirezaiei, S., Selby, D., and Sergeev, S., 2015. SHRIMP zircon U-Pb and biotite and hornblende Ar-Ar geochronology of Sungun Haftcheshmeh Kighal and Niaz porphyry Cu-Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran. International Journal of Earth Sciences, 104: 45-59.

[16]

Hildreth, W., and Moorbath, S., 1998. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 98: 455-489.

[17]

Hosseini, M.R., Hassanzadeh, J., Alirezaei, S., Sun, W., and Li, C.Y., 2017. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology. Lithos, 284: 296-309.

[18]

Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y., and Mo, X.X., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155.

[19]

Hou, Z.Q., Yang, Z.M., Qu, X.M., Meng, X.J., Li, Z.Q., Beaudoin, G., Rui, Z., Gao, Y., and Zaw, K., 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogen. Ore Geology Reviews, 36(1-3): 25-51.

[20]

Hou, Z.Q., Yang, Z.M., Lu, Y.J., Kemp, A., Zheng, Y.C., Li, Q.Y., Tang, J.X., Yang, Z.S., and Duan, L.F., 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250.

[21]

Hu, F., Ducea, M.N., Liu, S., and Chapman, J.B., 2017. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application. Scientific Reports, 7(1): 7058.

[22]

Jagoutz, O., 2014. Arc crustal differentiation mechanisms. Earth and Planetary Science Letters, 396: 267-277.

[23]

Kazemi, K., Modabberi, S., Gharibnejad, P., Xiao, Y., Sarjoughian, F., and Kananian, A., 2024. Mineral chemistry, trace elements, isotopic analysis and zircon U-Pb dating in the Hesar Pluton, Northern UDMA, Iran: Implications for precollisional magma mixing. Acta Geologica Sinica (English Edition), 98(3): 657-678.

[24]

Koshnaw, R.I., Stockli, D.F., and Schlunegger, F., 2018. Timing of the Arabia-Eurasia continental collision—Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland Kurdistan region of Iraq. Geology, 47(1): 47-50.

[25]

Lee, C.T.A., and Tang, M., 2020. How to make porphyry copper deposits. Earth and Planetary Science Letters, 529: 115868.

[26]

Lee, C.T.A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Le Roux, V., Yin, Q.Z., and Jin, D., 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation. Science, 336(6077): 64-68.

[27]

Liu, X.C., Xiong, X.L., Audetat, A., Li, Y., Song, M., Li, L., Sun, W.D., and Ding, X., 2014. Partitioning of copper between olivine orthopyroxene clinopyroxene spinel garnet and silicate melts at upper mantle conditions. Geochimima et Cosmochimica Acta, 125: 1-22.

[28]

Luo, C.H., Wang, R., Nebel, O., and Li, Q.W., 2024. Amphibole fractionation as a key driver for oxidation of magmas in convergent margins. Earth and Planetary Science Letters, 641: 118851.

[29]

McDonough, W.F., and Sun, S.S., 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253.

[30]

McQuarrie, N., and van Hinsbergen, D.J.J., 2013. Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41(3): 315-318.

[31]

Moghadam, H.S., Griffin, W.L., Li, X.H., Santos, J.F., Karsli, O., Stern, R.J., Ghorbani, G., Gain, S., Murphy, R., and O'Reilly, S.Y., 2017. Crustal evolution of NW Iran: Cadomian arcs, archean fragments and the Cenozoic magmatic flare-up. Journal of Petrology, 58(11): 2143-2190.

[32]

Moghadam, H.S., Li, Q.L., Li, X.H., Stern, R.J., Levresse, G., Santos, J.F., Lopez-Martinez, M., Ducea, M.N., Ghorbani, G., and Hassannezhad, A., 2020. Neotethyan subduction ignited the iran arc and backarc differently. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018460.

[33]

Moghadam, H.S., Li, Q.L., Griffin, W.L., Stern, R.J., Santos, J.F., Ducea, M.N., Ottley, C.J., Karsli, O., Sepidbar, F., and O'Reilly, S.Y., 2022. Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: The Southeast Iran example. Earth-Science Reviews, 226: 103930.

[34]

Mokhtari, M.A.A., Kouhestani, H., Pang, K.N., Hsu, S.C., Chung, S.L., and Lee, H.Y., 2022. Early Eocene high-Sr/Y magmas from the Urumieh-Dokhtar paleo-arc Iran: Implications for the origin of high-flux events in magmatic arcs. Lithos, 416-417: 106656.

[35]

Moritz, R., Melkonyan, R., Selby, D., Popkhadze, N., Gugushvili, V., Tayan, R., and Ramazanov, V., 2016a. Metallogeny of the Lesser Caucasus: From arc construction to postcollision evolution. Society of Economic Geologists Special Publication, 19: 157-192.

[36]

Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., and Putlitz, B., 2016b. Long-lived stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus Armenia and Nakhitchevan. Gondwana Research, 37: 465-503.

[37]

Pirouz, M., Avouac, J.P., Hassanzadeh, J., Kirschvink, J.L., and Bahroudi, A., 2017. Early Neogene foreland of the Zagros implications for the initial closure of the Neo-Tethys and kinematics of crustal shortening. Earth and Planetary Science Letters, 477: 168-182.

[38]

Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., Petrescu, L., and DeCelles, P.G., 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1): 117786.

[39]

Rabiee, A., Rossetti, F., Lucci, F., and Lustrino, M., 2022. Cenozoic porphyry and other hydrothermal ore deposits along the South Caucasus-West Iranian tectono-magmatic belt: A critical reappraisal of the controlling factors. Lithos, 430: 106874.

[40]

Rezeau, H., Moritz, R., Wotzlaw, J.F., Hovakimyan, S., and Tayan, R., 2019. Zircon petrochronology of the Meghri-Ordubad Pluton, Lesser Caucasus: Fingerprinting igneous processes and implications for the exploration of porphyry Cu-Mo deposits. Economic Geology, 114(7): 1365-1388.

[41]

Richards, J.P., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533.

[42]

Richards, J.P., 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology, 37(3): 247-250.

[43]

Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40 (1): 1-26.

[44]

Richards, J.P., 2015a. The oxidation state and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos, 233: 27-45.

[45]

Richards, J.P., 2015b. Tectonic magmatic and metallogenic evolution of the Tethyan orogen: From subduction to collision. Ore Geology Reviews, 70: 323-345.

[46]

Richards, J.P., and Sholeh, A., 2016. The Tethyan tectonic history and Cu-Au metallogeny of Iran. Society of Economic Geologists, Special Publication, 19: 193-212.

[47]

Santosh, M., and Groves, D.I., 2022. Global metallogeny in relation to secular evolution of the Earth and supercontinent cycles. Gondwana Research, 107: 395-422.

[48]

Shafiei, B., Haschke, M., and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks southeastern Iran. Mineralium Deposita, 44: 265-283.

[49]

Sharifi-Yazdi, M., Enayati, A., Salehi Aghdam, J., Bahrehvar, M., and Rezaei, S.M., 2024. Platform evolution in an Oligo-Miocene back-arc basin: An example from the Central Iran Basin. Acta Geologica Sinica (English Edition), 98(1): 185-206.

[50]

Sillitoe, R.H., 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184-197.

[51]

Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3-41.

[52]

Stern, C.R., Funk, J.A., Skewes, M.A., and Arévalo, A., 2007. Magmatic anhydrite in plutonic rocks at the El Teniente Cu-Mo deposit Chile and the role of sulfur-and copper-rich magmas in its formation. Economic Geology, 102(7): 1335-1344.

[53]

Sun, M., Tang, J.X., Klemd, R., Lin, B., Tang, P., Zhang, Z.B., Chen, W., Li, F.Q., Qi, J., Chen, H., and Gu, F.H., 2023. The formation of a giant post-collision porphyry copper system: A case study of the Jiama deposit, Tibet. Geological Society of America Bulletin, 136(3-4): 1675-1688.

[54]

Tang, M., Erdman, M., Eldridge, G., and Lee, C.T.A., 2018. The redox “filter” beneath magmatic orogens and the formation of continental crust. Science Advances, 4: eaar4444.

[55]

Tang, M., Lee, C.T.A., Costin, G., and Höfer, H.E., 2019. Recycling reduced iron at the base of magmatic orogens. Earth and Planetary Science Letters, 528: 115827.

[56]

Tang, M., Lee, C.T.A., Ji, W.Q., Wang, R., and Costin, G., 2020. Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances, 6(31): eaba6342.

[57]

Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics, 30(3): TC3008.

[58]

Verdel, C., Wernicke, B.P., Ramezani, J., Hassanzadeh, J., Renne, P.R., and Spell, T.L., 2007. Geology and thermochronology of Tertiary Cordilleran-style metamorphic core complexes in the Saghand region of central Iran. Geological Society of America Bulletin, 119(7-8): 961-977.

[59]

Wang, R., Weinberg, R.F., Collins, W.J., Richards, J.P., and Zhu, D.C., 2018. Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122-143.

[60]

Wang, X.H., Lang, X.H., Turlin, F., Deng, Y.L., Xie, F.W., He, Q., and Moritz, R., 2024. Copper behavior in arc-back-arc systems: Insights into the porphyry Cu metallogeny of the Gangdese belt, southern Tibet. Mineralium Deposita, 59(1): 133-143.

[61]

Yang, Z.M., and Cooke, D.R., 2019. Porphyry copper deposits in China. Society of Economic Geologist Special Publication, 22: 133-187.

[62]

Zhang, J.B., Wang, R., and Hong, J., 2022. Amphibole fractionation and its potential redox effect on arc crust: Evidence from the Kohistan arc cumulates. American Mineralogist, 107(9): 1779-1788.

[63]

Zheng, Y.C., Liu, S.A., Wu, C.D., Griffin, W.L., Li, Z.Q., Xu, B., Yang, Z.M., Hou, Z.Q., and O'Reilly, S.Y., 2019. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 47(2): 135-138.

[64]

Zhu, D.C., Wang, Q., Cawood, P.A., Zhao, Z.D., and Mo, X.X., 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214-223.

[65]

Zürcher, L., Bookstrom, A.A., Hammarstrom, J.M., Mars, J.C., Ludington, S.D., Zientek, M.L., Dunlap, P., and Wallis, J.C., 2019. Tectono-magmatic evolution of porphyry belts in the central Tethys region of Turkey the Caucasus Iran western Pakistan and southern Afghanistan. Ore Geology Reviews, 111: 102849.

RIGHTS & PERMISSIONS

2025 The Author(s). Acta Geologica Sinica (English Edition) published by John Wiley & Sons Australia, Ltd on behalf of Geological Society of China.

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/