Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia

Shuai ZHANG , Lu DAI , Guang ZHU

Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (2) : 352 -369.

PDF
Acta Geologica Sinica (English Edition) ›› 2025, Vol. 99 ›› Issue (2) : 352 -369. DOI: 10.1111/1755-6724.15282
Original Article

Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia

Author information +
History +
PDF

Abstract

The approximately 3000 km long Tan–Lu fault zone (TLFZ) in East Asia is the longest continental strike-slip fault zone in the world and exemplifies how such a fault zone forms and propagates on a continental scale. Structural and geochronological data from the TLFZ and surrounding regions indicate that the fault zone originated as NE/SW-striking sinistral ductile shear zones along an oblique continental convergence margin during the Triassic indentation collision between the North China Craton and the Yangtze Block. The Triassic fault zone, with a total length of about 720 km between the Dabie and Sulu orogens, exhibited an apparent sinistral offset of approximately 300 km along the TLFZ. The second stage of sinistral movement occurred in the earliest Late Jurassic, reactivating the pre-existing southern segment and propagating northwards to the southern coastline of present-day Bohai Bay, as well as forming a significant portion of the Dunhua–Mishan fault zone. The third stage of sinistral movement, in the earliest Early Cretaceous, was the most intense strike-slip movement of the Mesozoic, leading to the complete linkage of the TLFZ. This stage included further northward propagation of the southern–middle segment, both southward and northward propagation of the Dunhua–Mishan fault zone, as well as the formation of the entire Yilan–Yitong fault zone. The fourth stage, in the earliest Late Cretaceous, involved the reactivation of the entire TLFZ. Following its Triassic origin due to the indentation collision, the subduction of the Paleo-Pacific Plate and the subduction and closure of the Mongol–Okhotsk Ocean were responsible for the multi-stage sinistral movements from the Late Jurassic to the Cretaceous. The evolution of the TLFZ demonstrates that a continental-scale strike-slip fault zone (>1000 km long) forms through multiple stages of propagation and linkage in dynamic settings of plate convergence.

Keywords

Tan–Lu fault zone / origination / sinistral movement / propagation / through-going / termination

Cite this article

Download citation ▾
Shuai ZHANG, Lu DAI, Guang ZHU. Multiple Stages of Strike-slip Movement and the Propagation of the Tan–Lu Fault Zone, East Asia. Acta Geologica Sinica (English Edition), 2025, 99(2): 352-369 DOI:10.1111/1755-6724.15282

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao, H.H., Xu, W.L., Pei, F.P., Wang, Z.W., Wang, F., and Wang, Z.J., 2013. Zircon-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, 170: 191-207.

[2]

Chen, X.H., Wang, X.F., Zhang, Q., Chen, B.L., Chen, Z.L., Harrison, T.M., and Yin, A., 2000. Geochronologic study on the formation and evolution of Tan-Lu fault. Journal of Changchun University of Science and Technology, 30(3): 215-220 (in Chinese with English abstract).

[3]

Crowell, J.C., 1979. The San Andreas fault system through time. Journal of the Geological Society, 136: 293-302.

[4]

Dou, L.R., Song, J.G., and Wang, Y., 1996. Chronology of the formation of the northern Tan-Lu Fault Zone and its implications. Geological Review, 42(6): 508-512 (in Chinese with English Abstract).

[5]

Elliott, A.J., Oskin, M.E., Liu-Zeng, J., and Shao, Y.X., 2018. Persistent rupture terminations at a restraining bend from slip rates on the eastern Altyn Tagh fault. Tectonophysics, 733: 52-72.

[6]

Faure, M., Lin, W., Monie, P., Le Breton, N., Poussineau, S., Panis, D., and Deloule, E., 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China: New petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics, 22(3): 1018.

[7]

Gilder, S.A., Leloup, P.H., Courtillot, V., Chen, Y., Coe, R.S., Zhao, X.X., Xiao, W.J., Halim, N., Coqne, J.P., and Zhu, R.X., 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research: Solid Earth, 104(B7): 15365-15390.

[8]

Gu, C.C., Zhu, G., Zhai, M.J., Lin, S.Z., Song, L.H., and Liu, B., 2016. Features and origin time of Mesozoic strike-slip structures in the Yilan-Yitong Fault Zone. Science China Earth Sciences, 59(12): 2389-2410.

[9]

Gu, C.C., Zhu, G., Zhang, S., Liu, C., Li, Y.J., Lin, S.Z., and Wang, W., 2017. Cenozoic evolution of the Yilan-Yitong Graben in NE China: An example of graben formation controlled by pre-existing structures. Journal of Asian Earth Sciences, 146: 168-184.

[10]

Gu, C.C., Zhu, G., Li, Y.J., Su, N., Xiao, S.Y., Zhang, S., and Liu, C., 2018. Timing of deformation and location of the eastern Liaoyuan Terrane, NE China: Constraints on the final closure time of the Paleo-Asian Ocean. Gondwana Research, 60: 195-212.

[11]

Hacker, B.R., and Wang, Q.C., 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14: 994-1006.

[12]

Hacker, B.R., Ratschbacher, L., Webb, L., McWilliams, M.O., Ireland, T., Calvert, A., Dong, S., Wenk, H.R., and Chateigner, D., 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-early Jurassic tectonic unroofing. Journal of Geophysical Research: Solid Earth, 105(B6): 13339-13364.

[13]

Hacker, B.R., Wallis, S.R., Ratschbacher, L., Grove, M., and Gehrels, G., 2006. High temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25: TC5006.

[14]

Hao, W.X., Zhu, Z.X., and Zhu, G., 2021. Jurassic tectonics of the eastern North China Craton: Response to initial subduction of the Paleo-Pacific Plate. Geological Society of America Bulletin, 133(1-2): 19-36.

[15]

Jahn, B.M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., and Wu, J.T., 2015. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution. Journal of Asian Earth Sciences, 111: 872-918.

[16]

Kan, T.X., Li, L.M., Zheng, H.J., Li, J.H., Zhao, X.L., Chen, M., 2024. Surface and deep structure of the Hanshan-Wuwei basins in the Lower Yangtze region: Implications for Mesozoic tectonic evolution of the South China Block. Acta Geologica Sinica (English Edition), 98(5): 1154-1170.

[17]

Kemkin, I.V., Khanchuk, A.I., and Kemkina, R.A., 2016. Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin. Journal of Geodynamics, 102: 202-230.

[18]

Khanchuk, A.I., Kemkin, I.V., and Kruk, N.N., 2016. The Sikhote-Alin orogenic belt, Russian south east: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences, 120: 117-138.

[19]

Kim, Y.S. and Sanderson, D.J., 2006. Structural similarity and variety at the tips in a wide range of strike-slip faults: A review. Terra Nova, 18: 330-344.

[20]

Lan, T.G., Fan, H.R., Santosh, M., Hu, F.F., Yang, K.F., and Yang, Y.H., 2011. Geochemistry and Sr-Nd-Pb-Hf isotopes of the Mesozoic Dadian alkaline intrusive complex in the Sulu orogenic belt, eastern China: Implications for crust-mantle interaction. Chemical Geology, 85(1-4): 97-114.

[21]

Leech, M.L., and Webb, L.E., 2013. Is the HP-UHP Hong'an-Dabie-Sulu Orogen a piercing point for offset on the Tan-Lu fault? Journal of Asian Earth Sciences, 63: 112-129.

[22]

Li, C.M., Zhang, C.H., and Cope, T.D., 2023. A new model for the segmentation, propagation and linkage of the Tan-Lu fault zone, East Asia. Journal of Asian Earth Sciences, 241: 105466.

[23]

Li, Y.L., Qiu, J.S., and Liu, L., 2012. Geochronology and geochemistry of sodic volcanic rocks from Shenquan in Tancheng County, Shandong Province: Implications for unraveling the nature of mantle source and petrogenesis. Acta Petrologica Et Mineralogica, 31(6): 783-789.

[24]

Li, Z.X., 1994. Collision between the north and south blocks: A crust-detachment model for suturing in the region east of the Tan-Lu fault. Geology, 22(8): 739-742.

[25]

Lin, S.F., 1995. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault: Comment. Geology, 23(6): 574-576.

[26]

Liu, C., Zhu, G., Zhang, S., Gu, C.C., Li, Y.J., Su, N., and Xiao, S.Y., 2018. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction. Tectonophysics, 723: 201-222.

[27]

Liu, C., Zhu, G., Xie, C.L., Zhang, S., Li, Y.J., Su, N. and Xiao, S.Y., 2019. Location and sinistral displacement of the eastern Liaoyuan Accretionary Belt along the Tan-Lu Fault Zone, NE China. Journal of Asian Earth Sciences, 147: 409-422.

[28]

Liu, F.L., and Liou, J.G., 2011. Zircon as the best mineral for P-t-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40: 1-39.

[29]

Liu, S., Hu, R., Gao, S., Feng, C., Qi, Y., and Wang, T., 2008. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, eastern China. Lithos, 106(3-4): 365-379.

[30]

Lu, Y.C., Zhu, G., Yin, H., Su, N., Wu, X.D., Zhang, S., and Xie, C.L., 2022a. Superposition of two orthogonal transpressions: An example from the oblique convergent margin adjoining the Tan-Lu Fault Zone, eastern China. Tectonophysics, 836: 229415.

[31]

Lu, Y.C., Zhu, G., Yin, H., Zhang, S., and Niu, M.L., 2022b. Origin of the Tan-Lu fault zone and continental oblique convergence. Acta Geologica Sinica, 96(10): 3410-3425 (in Chinese with English abstract).

[32]

Lu, Y.C., Zhu, G., Yin, H., Wu, X.D., Zhang, S., and Xie, C.L., 2023. Intracontinental deformation around the fixed tip of the continental-scale, strike-slip Tan-Lu fault zone in eastern China. Journal of the Geological Society, 180(2): jgs2022-118.

[33]

Meng, Q.R., Li, S.Y., and Li, R.W., 2007. Mesozoic evolution of the Hefei Basin in eastern China: Sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault. Geological Society of America Bulletin, 119: 897-916.

[34]

Meng, Q.R., Wei, H.H., Wu, G.L., and Duan, L., 2014. Early Mesozoic tectonic settings of the northern North China Craton: Tectonophysics, 611: 155-166.

[35]

Meng, Q.R., Wu, G.L., Fan, L.G., and Wei, H.H., 2019. Tectonic evolution of early Mesozoic sedimentary basins in the North China block. Earth-Science Reviews, 190: 416-438.

[36]

Mercier, J.L., Hou, M.J., Vergely, P., and Wang, Y.M., 2007. Structural and stratigraphical constraints on the kinematics history of the southern Tan-Lu Fault Zone during the Mesozoic Anhui Province, China. Tectonophysics, 439: 33-66.

[37]

Metelkin, D.V., Vernikovsky, V.A., Kazansky, A.Y., and Wingate, M.T.D., 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence. Gondwana Research, 18: 400-419.

[38]

Okay, A.I., and Şengör, A.C., 1992. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 20(5): 411-414.

[39]

Okay, A.I., Tqysqz, O., and Kaya, X., 2004. From transpression to transtension: Changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region. Tectonophysics, 391: 259-282.

[40]

Pei, J.L., Sun, Z.M., Liu, J., Liu, J., Wang, X.S., Yang, Z.Y., Zhao, Y., and Li, H.B., 2011. A paleomagnetic study from the late Jurassic volcanics (155 Ma), North China: Implications for the width of Mongol-Okhotsk Ocean. Tectonophysics, 510: 370-380.

[41]

Qiu, J.S., Liu, L., and Li, Y.L., 2012. Geochronology and geochemistry of potassic and sodic volcanic rocks in the Tangtou Basin, Shandong Province: Implications for lithospheric thinning beneath the North China Craton. Acta Geologica Sinica, 28(4): 1044-1056 (in Chinese with English abstract).

[42]

Shu, L.S., Yin, H.W., Faure, M. and Chen, Y., 2017. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt. Journal of Asian Earth Sciences, 141: 161-173.

[43]

Sun, X.M., Liu, Y.J., Han, G.Q., Wang, S.Q., and Wang, Y.D., 2008. 40Ar/39Ar geochronology evidence of strike-slip movement in the Dunhua-Mishan fault zone. Journal of Jilin University (Earth Science Edition), 38(6): 965-972 (in Chinese with English Abstract).

[44]

Sutherland, R., Davey, F., and Beavan, J., 2000. Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure. Earth and Planetary Science Letters, 177: 141-151.

[45]

Wang, E., Meng, Q.R., Burchfiel, B.C., and Zhang, G., 2003. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China. Geology, 31(4): 307-310.

[46]

Wang, Y., 2006. The onset of the Tan-Lu fault movement in eastern China: Constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova, 18(6): 423-431.

[47]

Wang, Y.S., Xiang, B.W., Zhu, G., and Jiang, D.Z., 2011. Structural and geochronological evidence for Early Cretaceous orogen-parallel extension of the ductile lithosphere in the northern Dabie orogenic belt, East China. Journal of Structural Geology, 33: 362-380.

[48]

Wilde, S.A., Wu, F.Y., and Zhao, G.C., 2010. The Khanka block, NE China, and its significance or the evolution of the central Asian Orogenic Belt and continental accretion. Geological Society London Special Publications, 338: 117-137.

[49]

Wilde, S.A., 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction: A review of the evidence. Tectonophysics, 662: 345-362.

[50]

Xiao, W., Windley, B.F., Hao, J., and Zhai, M., 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the Central Asian orogenic belt. Tectonics, 22(6): 1069.

[51]

Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., and Wang, W., 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences, 74: 167-193.

[52]

Xu, J.W., Zhu, G., Tong, W.X., Cui, K.R., and Liu, Q., 1987. Formation and evolution of the Tancheng-Lujiang wrench fault system: A major shear system to the northern of the Pacific Ocean. Tectonophysics, 134: 273-310.

[53]

Xu, J.W., Tong, W.X., Zhu, G., Lin, S.F., and Ma, G.F., 1989. An outline of the pre-Jurassic tectonic framework in East Asia. Journal of Southeast Asian Earth Sciences, 3(1-4): 29-45.

[54]

Xu, J.W., and Zhu, G., 1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review, 36: 771-784.

[55]

Xu, Z.Q., Zhang, Z.M., Liu, F.L., Yang, J.S., Li, H.B., Yang, T.N., Qiu, H.J., Li, T.F., Meng, F.C., Chen, S.Z., Tang, Z.M., and Chen, F.Y., 2003. Exhumation structure and mechanism of the Sulu ultrahigh-pressure metamorphic belt, Central China. Acta Geologica Sinica, 77(4): 433-450 (in Chinese with English abstract).

[56]

Yang, C.W., and Wang, C.H., 2023. Tensile fractures and in situ stress measurement data constraints on Cretaceous-Present tectonic stress field evolution of the Tanlu fault zone in Shandong Province, North China Craton. Acta Geologica Sinica (English Edition), 97(6): 1616-1624.

[57]

Yin, A., and Nie, S.Y., 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia. Tectonics, 12(4): 801-813.

[58]

Yin, H., Zhu, G., Wu, X.D., Su, N., Lu, Y.C., and Zhang, S., 2020. Continental response to mid-Cretaceous global plate reorganization: Evidence from the Tan-Lu Fault Zone, eastern China. Gondwana Research, 86(2): 23-45.

[59]

Yin, H., Zhu, G., Wu, X.D., Su, N., Lu, Y.C., and Zhang, S., 2023. Buoyancy-driven exhumation deformation: Evidence from the Sulu orogen, eastern China. Geological Society of America Bulletin, 135(7-8): 1807-1827.

[60]

Zhang, Q., Teyssier, C., Dunlap, J., and Zhu, G., 2007. Oblique collision between North and South China recorded in Zhangbaling and Fucha Shan (Dabie-Sulu transfer zone). In: Till A.B., Boeske S.M., Sample J.C., and Foster D.A. (eds.), Exhumation Associated with Continental Strike-Slip Fault System. The Geological Society of America Special Paper, 434: 167-206.

[61]

Zhang, Y.Q., Dong, S.W., and Shi, W., 2003. Cretaceous deformation history of the middle Tan-Lu Fault Zone in Shandong Province, eastern China. Tectonophysics, 363: 243-258.

[62]

Zhang, Y.Q., and Dong, S.W., 2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China: Advances and new understanding. Geological Bulletin of China, 27: 1371-1390.

[63]

Zhao, G.C., and Cawood, P.A., 2012. Precambrian geology of China. Precambrian Research, 222: 13-54.

[64]

Zhao, T., Zhu, G., Lin, S.Z., and Wang, H.Q., 2016. Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu fault zone. East China. Earth-Science Reviews, 152: 14-36.

[65]

Zhao, T., Zhu, G., Ye, J., Xu, Z.G., Xiang, B.W., Gu, C.C., Li, Y.J., Luo, R.B., Dai, C.R., and Hu, H.F., 2022. Interactions between large-scale strike-slip intersecting faults: Implication from the Tan-Lu and Xiangfan-Guangji fault zones in eastern China. International Geology Review, 64(21): 3028-3052.

[66]

Zheng, Y.F., 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5-48.

[67]

Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., and Zhang, X.H., 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478: 230-246.

[68]

Zhou, J.B., Han, J., Zhao, G.C., Zhang, X.Z., Cao, J.L., Wang, B., and Pei, S.H., 2015. The emplacement time of the Hegenshan ophiolite: Constraints from the unconformably overlying Paleozoic strata. Tectonophysics, 662: 398-415.

[69]

Zhu, G., Wang, Y.S., Liu, G.S., Niu, M.L., Xie, C.L., and Li, C.C., 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu Fault Zone, East China. Journal of Structural Geology, 27 (8): 1379-1398.

[70]

Zhu, G., Liu, G.S., Niu, M.L., Xie, C.L., Wang, Y.S., and Xiang, B.W., 2009. Syn-collisional transform faulting of the Tan-Lu Fault Zone, East China. International Journal of Earth Sciences, 98(1): 135-155.

[71]

Zhu, G., Niu, M.L., Xie, C.L., and Wang, Y.S., 2010. Sinistral to normal faulting along the Tan-Lu Fault Zone: Evidence for geodynamic switching of the East China continental margin. Journal of Geology, 118(3): 277-293.

[72]

Zhu, G., Jiang, D.Z., Zhang, B.L., and Chen, Y., 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22: 86-103.

[73]

Zhu, G., Chen, Y., Jiang, D.Z., and Lin, S.Z., 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex. Tectonophysics, 656: 91-110.

[74]

Zhu, G., Wang, Y.S., Wang, W., Zhang, S., Liu, C., Gu, C.C., and Li, Y.J., 2017. An accreted micro-continent in the north of the Dabie Orogen, East China: Evidence from detrital zircon dating. Tectonophysics, 698: 47-64.

[75]

Zhu, G., Liu, C., Gu, C.C., Zhang, S., Li, Y.J., Su, N., and Xiao, S.Y., 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu Fault Zone. Science China Earth Sciences, 61: 386-405.

[76]

Zhu, G., Lu, Y.C., Su, N., Wu, X.D., Yin, H., Zhang, S., Xie, C.L., and Niu, M.L., 2021. Crustal deformation and dynamics of Early Cretaceous in the North China Craton. Science China Earth Sciences, 64(9): 1428-1450.

RIGHTS & PERMISSIONS

2025 The Author(s). Acta Geologica Sinica (English Edition) published by John Wiley & Sons Australia, Ltd on behalf of Geological Society of China.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/