Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe

  • Wei He , 1 ,
  • Yuanyuan Yang 1 ,
  • Yuhui Qian 1 ,
  • Zhuoyi Chen 1 ,
  • Yongxin Zheng 1 ,
  • Wenping Zhao 1 ,
  • Chenxu Yan 2 ,
  • Zhiqian Guo 2 ,
  • Shu Quan , 1,3
Expand
  • 1. State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai, China
  • 2. Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
  • 3. Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, China
whe@mail.ecust.edu.cn
shuquan@ecust.edu.cn

Received date: 19 Jun 2023

Revised date: 11 Aug 2023

Accepted date: 17 Aug 2023

Copyright

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

Abstract

The presence of protein aggregates in numerous human diseases underscores the significance of detecting these aggregates to comprehend disease mechanisms and develop novel therapeutic approaches for combating these disorders. Despite the development of various biosensors and fluorescent probes that selectively target amyloid fibers or amorphous aggregates, there is still a lack of tools capable of simultaneously detecting both types of aggregates. Herein, we demonstrate the quantitative discernment of amorphous aggregates by QM-FN-SO3, an aggregationinduced emission (AIE) probe initially designed for detecting amyloid fibers. This probe easily penetrates the membranes of the widely-used prokaryotic model organism Escherichia coli, enabling the visualization of both amorphous aggregates and amyloid fibers through near-infrared fluorescence. Notably, the probe exhibits sensitivity in distinguishing the varying aggregation propensities of proteins, regardless of whether they form amorphous aggregates or amyloid fibers in vivo. These properties contribute to the successful application of the QM-FN-SO3 probe in the subsequent investigation of the antiaggregation activities of two outer membrane protein (OMP) chaperones, both in vitro and in their physiological environment. Overall, our work introduces a near-infrared fluorescent chemical probe that can quantitatively detect amyloid fibers and amorphous aggregates with high sensitivity in vitro and in vivo. Furthermore, it demonstrates the applicability of the probe in chaperone biology and its potential as a high-throughput screening tool for protein aggregation inhibitors and folding factors.

Cite this article

Wei He , Yuanyuan Yang , Yuhui Qian , Zhuoyi Chen , Yongxin Zheng , Wenping Zhao , Chenxu Yan , Zhiqian Guo , Shu Quan . Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe[J]. Aggregate, 2024 , 5(1) : 412 . DOI: 10.1002/agt2.412

1
C. Soto, S. Pritzkow, Nat. Neurosci. 2018, 21, 1332.

DOI

2
H. Olzscha, Biol. Chem. 2019, 400, 895.

DOI

3
D. Balchin, M. Hayer-Hartl, F. U. Hartl, FEBS Lett. 2020, 594, 2770.

DOI

4
D. Balchin, M. Hayer-Hartl, F. U. Hartl, Science 2016, 353, aac4354.

5
Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Annu. Rev. Biochem. 2013, 82, 323.

DOI

6
S. Horowitz, P. Koldewey, F. Stull, J. C. Bardwell, Curr. Opin. Struct. Biol. 2018, 48, 1.

DOI

7
F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21.

DOI

8
F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27.

DOI

9
A. Kaushik, R. D. Jayant, S. Tiwari, A. Vashist, M. Nair, Biosens. Bioelectron. 2016, 80, 273.

DOI

10
Y. Zhang, G. Figueroa-Miranda, C. Zafiu, D. Willbold, A. Offenhäusser, D. Mayer, ACS Sens. 2019, 4, 3042.

DOI

11
S. S. Li, C. W. Lin, K. C. Wei, C. Y. Huang, P. H. Hsu, H. L. Liu, Y. J. Lu, S. C. Lin, H. W. Yang, C. C. Ma, Sci. Rep. 2016, 6, 25155.

12
Y. Zheng, L. Zhang, J. Zhao, L. Li, M. Wang, P. Gao, Q. Wang, X. Zhang, W. Wang, Theranostics 2022, 12, 2095.

DOI

13
Y. Zhang, B. Ren, D. Zhang, Y. Liu, M. Zhang, C. Zhao, J. Zheng, J. Mater. Chem. B 2020, 8, 6179.

DOI

14
A. Aliyan, N. P. Cook, A. A. Martí, Chem. Rev. 2019, 119, 11819.

DOI

15
D. Shen, Y. L. Bai, Y. Liu, ChemBioChem 2022, 23, e202100443.

16
M. M. Xu, W. M. Ren, X. C. Tang, Y. H. Hu, H. Y. Zhang, Acta Pharmacol. Sin. 2016, 37, 719.

DOI

17
M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, S. E. Radford, Nat. Rev. Mol. Cell Biol. 2018, 19, 755.

DOI

18
M. R. Sawaya, M. P. Hughes, J. A. Rodriguez, R. Riek, D. S. Eisenberg, Cell 2021, 184, 4857.

DOI

19
Q. Xu, Y. Ma, Y. Sun, D. Li, X. Zhang, C. Liu, Aggregate 2023, 4, e333.

20
M. Groenning, J. Chem. Biol. 2010, 3, 1.

21
E. I. Yakupova, L. G. Bobyleva, I. M. Vikhlyantsev, A. G. Bobylev, Biosci. Rep. 2019, 39, BSR20181415.

22
Y. Tang, D. Zhang, Y. Zhang, Y. Liu, L. Cai, E. Plaster, J. Zheng, J. Mater. Chem. B 2022, 10, 2280.

DOI

23
Y. Zhou, J. Hua, D. Ding, Y. Tang, Biomaterials 2022, 286, 121605.

DOI

24
Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, X. Zhang, J. Am. Chem. Soc. 2018, 140, 7381.

DOI

25
B. Shen, K. H. Jung, S. Ye, C. A. Hoelzel, C. H. Wolstenholme, H. Huang, Y. Liu, X. Zhang, Aggregate 2022, 4, e239.

26
S. Ye, C. H. Hsiung, Y. Tang, X. Zhang, Acc. Chem. Res. 2022, 55, 381.

DOI

27
K. L. Zapadka, F. J. Becher, A. L. G. dos Santos, S. E. Jackson, Interface Focus 2017, 7, 20170030.

DOI

28
S. D. Stranks, H. Ecroyd, S. Van Sluyter, E. J. Waters, J. A. Carver, L. von Smekal, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 051907.

29
Y. Yoshimura, Y. Lin, H. Yagi, Y. H. Lee, H. Kitayama, K. Sakurai, M. So, H. Ogi, H. Naiki, Y. Goto, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14446.

DOI

30
P. Constantinescu, R. A. Brown, A. R. Wyatt, M. Ranson, M. R. Wilson, J. Biol. Chem. 2017, 292, 14425.

DOI

31
H. Jozawa, M. G. Kabir, T. Zako, M. Maeda, K. Chiba, Y. Kuroda, FEBS Lett. 2016, 590, 3501.

DOI

32
L. Breydo, J. W. Wu, V. N. Uversky, Biochim. Biophys. Acta 2012, 1822, 261.

DOI

33
D. Shen, W. Jin, Y. Bai, Y. Huang, H. Lyu, L. Zeng, M. Wang, Y. Tang, W. Wan, X. Dong, Z. Gao, H. L. Piao, X. Liu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 16067.

DOI

34
W. Zhang, F. Huo, C. Yin, J. Mater. Chem. B 2018, 6, 6919.

DOI

35
W. Fu, C. Yan, Z. Guo, J. Zhang, H. Zhang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2019, 141, 3171.

DOI

36
N. Chamachi, A. Hartmann, M. Q. Ma, A. Svirina, G. Krainer, M. Schlierf, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2118919119.

37
B. Schiffrin, A. N. Calabrese, P. W. A. Devine, S. A. Harris, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Struct. Mol. Biol. 2016, 23, 786.

DOI

38
A. N. Calabrese, B. Schiffrin, M. Watson, T. K. Karamanos, M. Walko, J. R. Humes, J. E. Horne, P. White, A. J. Wilson, A. C. Kalli, R. Tuma, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Commun. 2020, 11, 2155.

39
S. E. Rollauer, M. A. Sooreshjani, N. Noinaj, S. K. Buchanan, Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20150023.

DOI

40
J. G. Sklar, T. Wu, D. Kahne, T. J. Silhavy, Genes Dev. 2007, 21, 24 73.

41
X. Ge, R. Wang, J. Ma, Y. Liu, A. N. Ezemaduka, P. R. Chen, X. M. Fu, Z. Y. Chang, FEBS J. 2014, 281, 1226.

DOI

42
H. Kim, K. Wu, C. Lee, Front. Mol. Biosci. 2021, 8, 678697.

43
B. M. Burmann, S. Hiller, Chimia 2012, 66, 759.

DOI

44
V. Sachsenhauser, X. X. Deng, H. H. Kim, M. Jankovic, J. C. A. Bardwell, ACS Chem. Biol. 2020, 15, 1078.

DOI

45
C. Ren, X. Wen, J. Mencius, S. Quan, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2101618118.

46
D. Chakraborty, J. E. Straub, D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 19926.

DOI

47
P. Nedumpully-Govindan, F. Ding, Sci. Rep. 2015, 5, 8240.

DOI

48
Y. Lin, H. Im, L. T. Diem, S. Ham, Biochem. Biophys. Res. Commun. 2019, 510, 442.

DOI

49
J. C. Saunders, L. M. Young, R. A. Mahood, M. P. Jackson, C. H. Revill, R. J. Foster, D. A. Smith, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Chem. Biol. 2016, 12, 94.

DOI

50
Y. Xu, R. Maya-Martinez, N. Guthertz, G. R. Heath, I. W. Manfield, A. L. Breeze, F. Sobott, R. Foster, S. E. Radford, Nat. Commun. 2022, 13, 1040.

51
G. Mas, J. Thoma, S. Hiller, Subcell. Biochem. 2019, 92, 169.

52
M. Kumar, Y. N. Hong, D. C. Thorn, H. Ecroyd, J. A. Carver, Anal. Chem. 2017, 89, 9322.

DOI

53
C. Yan, J. Dai, Y. Yao, W. Fu, H. Tian, W. H. Zhu, Z. Guo, Nat. Protoc. 2023, 18, 1316.

DOI

54
S. Quan, L. Wang, E. V. Petrotchenko, K. A. Makepeace, S. Horowitz, J. Yang, Y. Zhang, C. H. Borchers, J. C. Bardwell, eLife 2014, 3, e01584.

55
B. M. Burmann, C. Wang, S. Hiller, Nat. Struct. Mol. Biol. 2013, 20, 1265.

DOI

56
W. He, G. Yu, T. Li, L. Bai, Y. Yang, Z. Xue, Y. Pang, D. Reichmann, S. Hiller, L. He, M. Liu, S. Quan, mBio 2021, 12, e0213021.

57
W. He, J. Zhang, V. Sachsenhauser, L. Wang, J. C. A. Bardwell, S. Quan, J. Biol. Chem. 2020, 295, 14488.

DOI

58
Y. Li, J. Han, Y. Zhang, F. Cao, Z. Liu, S. Li, J. Wu, C. Hu, Y. Wang, J. Shuai, J. Chen, L. Cao, D. Li, P. Shi, C. Tian, J. Zhang, Y. Dou, G. Li, Y. Chen, M. Lei, Nature 2016, 530, 447.

DOI

Options
Outlines

/