Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe

Wei He, Yuanyuan Yang, Yuhui Qian, Zhuoyi Chen, Yongxin Zheng, Wenping Zhao, Chenxu Yan, Zhiqian Guo, Shu Quan

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 412. DOI: 10.1002/agt2.412
RESEARCH ARTICLE

Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe

Author information +
History +

Abstract

The presence of protein aggregates in numerous human diseases underscores the significance of detecting these aggregates to comprehend disease mechanisms and develop novel therapeutic approaches for combating these disorders. Despite the development of various biosensors and fluorescent probes that selectively target amyloid fibers or amorphous aggregates, there is still a lack of tools capable of simultaneously detecting both types of aggregates. Herein, we demonstrate the quantitative discernment of amorphous aggregates by QM-FN-SO3, an aggregationinduced emission (AIE) probe initially designed for detecting amyloid fibers. This probe easily penetrates the membranes of the widely-used prokaryotic model organism Escherichia coli, enabling the visualization of both amorphous aggregates and amyloid fibers through near-infrared fluorescence. Notably, the probe exhibits sensitivity in distinguishing the varying aggregation propensities of proteins, regardless of whether they form amorphous aggregates or amyloid fibers in vivo. These properties contribute to the successful application of the QM-FN-SO3 probe in the subsequent investigation of the antiaggregation activities of two outer membrane protein (OMP) chaperones, both in vitro and in their physiological environment. Overall, our work introduces a near-infrared fluorescent chemical probe that can quantitatively detect amyloid fibers and amorphous aggregates with high sensitivity in vitro and in vivo. Furthermore, it demonstrates the applicability of the probe in chaperone biology and its potential as a high-throughput screening tool for protein aggregation inhibitors and folding factors.

Keywords

aggregation-induced emission / fluorescence / molecular chaperone / protein aggregation

Cite this article

Download citation ▾
Wei He, Yuanyuan Yang, Yuhui Qian, Zhuoyi Chen, Yongxin Zheng, Wenping Zhao, Chenxu Yan, Zhiqian Guo, Shu Quan. Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe. Aggregate, 2024, 5(1): 412 https://doi.org/10.1002/agt2.412

References

[1]
C. Soto, S. Pritzkow, Nat. Neurosci. 2018, 21, 1332.
CrossRef Google scholar
[2]
H. Olzscha, Biol. Chem. 2019, 400, 895.
CrossRef Google scholar
[3]
D. Balchin, M. Hayer-Hartl, F. U. Hartl, FEBS Lett. 2020, 594, 2770.
CrossRef Google scholar
[4]
D. Balchin, M. Hayer-Hartl, F. U. Hartl, Science 2016, 353, aac4354.
[5]
Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Annu. Rev. Biochem. 2013, 82, 323.
CrossRef Google scholar
[6]
S. Horowitz, P. Koldewey, F. Stull, J. C. Bardwell, Curr. Opin. Struct. Biol. 2018, 48, 1.
CrossRef Google scholar
[7]
F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21.
CrossRef Google scholar
[8]
F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27.
CrossRef Google scholar
[9]
A. Kaushik, R. D. Jayant, S. Tiwari, A. Vashist, M. Nair, Biosens. Bioelectron. 2016, 80, 273.
CrossRef Google scholar
[10]
Y. Zhang, G. Figueroa-Miranda, C. Zafiu, D. Willbold, A. Offenhäusser, D. Mayer, ACS Sens. 2019, 4, 3042.
CrossRef Google scholar
[11]
S. S. Li, C. W. Lin, K. C. Wei, C. Y. Huang, P. H. Hsu, H. L. Liu, Y. J. Lu, S. C. Lin, H. W. Yang, C. C. Ma, Sci. Rep. 2016, 6, 25155.
[12]
Y. Zheng, L. Zhang, J. Zhao, L. Li, M. Wang, P. Gao, Q. Wang, X. Zhang, W. Wang, Theranostics 2022, 12, 2095.
CrossRef Google scholar
[13]
Y. Zhang, B. Ren, D. Zhang, Y. Liu, M. Zhang, C. Zhao, J. Zheng, J. Mater. Chem. B 2020, 8, 6179.
CrossRef Google scholar
[14]
A. Aliyan, N. P. Cook, A. A. Martí, Chem. Rev. 2019, 119, 11819.
CrossRef Google scholar
[15]
D. Shen, Y. L. Bai, Y. Liu, ChemBioChem 2022, 23, e202100443.
[16]
M. M. Xu, W. M. Ren, X. C. Tang, Y. H. Hu, H. Y. Zhang, Acta Pharmacol. Sin. 2016, 37, 719.
CrossRef Google scholar
[17]
M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, S. E. Radford, Nat. Rev. Mol. Cell Biol. 2018, 19, 755.
CrossRef Google scholar
[18]
M. R. Sawaya, M. P. Hughes, J. A. Rodriguez, R. Riek, D. S. Eisenberg, Cell 2021, 184, 4857.
CrossRef Google scholar
[19]
Q. Xu, Y. Ma, Y. Sun, D. Li, X. Zhang, C. Liu, Aggregate 2023, 4, e333.
[20]
M. Groenning, J. Chem. Biol. 2010, 3, 1.
[21]
E. I. Yakupova, L. G. Bobyleva, I. M. Vikhlyantsev, A. G. Bobylev, Biosci. Rep. 2019, 39, BSR20181415.
[22]
Y. Tang, D. Zhang, Y. Zhang, Y. Liu, L. Cai, E. Plaster, J. Zheng, J. Mater. Chem. B 2022, 10, 2280.
CrossRef Google scholar
[23]
Y. Zhou, J. Hua, D. Ding, Y. Tang, Biomaterials 2022, 286, 121605.
CrossRef Google scholar
[24]
Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, X. Zhang, J. Am. Chem. Soc. 2018, 140, 7381.
CrossRef Google scholar
[25]
B. Shen, K. H. Jung, S. Ye, C. A. Hoelzel, C. H. Wolstenholme, H. Huang, Y. Liu, X. Zhang, Aggregate 2022, 4, e239.
[26]
S. Ye, C. H. Hsiung, Y. Tang, X. Zhang, Acc. Chem. Res. 2022, 55, 381.
CrossRef Google scholar
[27]
K. L. Zapadka, F. J. Becher, A. L. G. dos Santos, S. E. Jackson, Interface Focus 2017, 7, 20170030.
CrossRef Google scholar
[28]
S. D. Stranks, H. Ecroyd, S. Van Sluyter, E. J. Waters, J. A. Carver, L. von Smekal, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 051907.
[29]
Y. Yoshimura, Y. Lin, H. Yagi, Y. H. Lee, H. Kitayama, K. Sakurai, M. So, H. Ogi, H. Naiki, Y. Goto, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14446.
CrossRef Google scholar
[30]
P. Constantinescu, R. A. Brown, A. R. Wyatt, M. Ranson, M. R. Wilson, J. Biol. Chem. 2017, 292, 14425.
CrossRef Google scholar
[31]
H. Jozawa, M. G. Kabir, T. Zako, M. Maeda, K. Chiba, Y. Kuroda, FEBS Lett. 2016, 590, 3501.
CrossRef Google scholar
[32]
L. Breydo, J. W. Wu, V. N. Uversky, Biochim. Biophys. Acta 2012, 1822, 261.
CrossRef Google scholar
[33]
D. Shen, W. Jin, Y. Bai, Y. Huang, H. Lyu, L. Zeng, M. Wang, Y. Tang, W. Wan, X. Dong, Z. Gao, H. L. Piao, X. Liu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 16067.
CrossRef Google scholar
[34]
W. Zhang, F. Huo, C. Yin, J. Mater. Chem. B 2018, 6, 6919.
CrossRef Google scholar
[35]
W. Fu, C. Yan, Z. Guo, J. Zhang, H. Zhang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2019, 141, 3171.
CrossRef Google scholar
[36]
N. Chamachi, A. Hartmann, M. Q. Ma, A. Svirina, G. Krainer, M. Schlierf, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2118919119.
[37]
B. Schiffrin, A. N. Calabrese, P. W. A. Devine, S. A. Harris, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Struct. Mol. Biol. 2016, 23, 786.
CrossRef Google scholar
[38]
A. N. Calabrese, B. Schiffrin, M. Watson, T. K. Karamanos, M. Walko, J. R. Humes, J. E. Horne, P. White, A. J. Wilson, A. C. Kalli, R. Tuma, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Commun. 2020, 11, 2155.
[39]
S. E. Rollauer, M. A. Sooreshjani, N. Noinaj, S. K. Buchanan, Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20150023.
CrossRef Google scholar
[40]
J. G. Sklar, T. Wu, D. Kahne, T. J. Silhavy, Genes Dev. 2007, 21, 24 73.
[41]
X. Ge, R. Wang, J. Ma, Y. Liu, A. N. Ezemaduka, P. R. Chen, X. M. Fu, Z. Y. Chang, FEBS J. 2014, 281, 1226.
CrossRef Google scholar
[42]
H. Kim, K. Wu, C. Lee, Front. Mol. Biosci. 2021, 8, 678697.
[43]
B. M. Burmann, S. Hiller, Chimia 2012, 66, 759.
CrossRef Google scholar
[44]
V. Sachsenhauser, X. X. Deng, H. H. Kim, M. Jankovic, J. C. A. Bardwell, ACS Chem. Biol. 2020, 15, 1078.
CrossRef Google scholar
[45]
C. Ren, X. Wen, J. Mencius, S. Quan, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2101618118.
[46]
D. Chakraborty, J. E. Straub, D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 19926.
CrossRef Google scholar
[47]
P. Nedumpully-Govindan, F. Ding, Sci. Rep. 2015, 5, 8240.
CrossRef Google scholar
[48]
Y. Lin, H. Im, L. T. Diem, S. Ham, Biochem. Biophys. Res. Commun. 2019, 510, 442.
CrossRef Google scholar
[49]
J. C. Saunders, L. M. Young, R. A. Mahood, M. P. Jackson, C. H. Revill, R. J. Foster, D. A. Smith, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Chem. Biol. 2016, 12, 94.
CrossRef Google scholar
[50]
Y. Xu, R. Maya-Martinez, N. Guthertz, G. R. Heath, I. W. Manfield, A. L. Breeze, F. Sobott, R. Foster, S. E. Radford, Nat. Commun. 2022, 13, 1040.
[51]
G. Mas, J. Thoma, S. Hiller, Subcell. Biochem. 2019, 92, 169.
[52]
M. Kumar, Y. N. Hong, D. C. Thorn, H. Ecroyd, J. A. Carver, Anal. Chem. 2017, 89, 9322.
CrossRef Google scholar
[53]
C. Yan, J. Dai, Y. Yao, W. Fu, H. Tian, W. H. Zhu, Z. Guo, Nat. Protoc. 2023, 18, 1316.
CrossRef Google scholar
[54]
S. Quan, L. Wang, E. V. Petrotchenko, K. A. Makepeace, S. Horowitz, J. Yang, Y. Zhang, C. H. Borchers, J. C. Bardwell, eLife 2014, 3, e01584.
[55]
B. M. Burmann, C. Wang, S. Hiller, Nat. Struct. Mol. Biol. 2013, 20, 1265.
CrossRef Google scholar
[56]
W. He, G. Yu, T. Li, L. Bai, Y. Yang, Z. Xue, Y. Pang, D. Reichmann, S. Hiller, L. He, M. Liu, S. Quan, mBio 2021, 12, e0213021.
[57]
W. He, J. Zhang, V. Sachsenhauser, L. Wang, J. C. A. Bardwell, S. Quan, J. Biol. Chem. 2020, 295, 14488.
CrossRef Google scholar
[58]
Y. Li, J. Han, Y. Zhang, F. Cao, Z. Liu, S. Li, J. Wu, C. Hu, Y. Wang, J. Shuai, J. Chen, L. Cao, D. Li, P. Shi, C. Tian, J. Zhang, Y. Dou, G. Li, Y. Chen, M. Lei, Nature 2016, 530, 447.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/