Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe

Wei He , Yuanyuan Yang , Yuhui Qian , Zhuoyi Chen , Yongxin Zheng , Wenping Zhao , Chenxu Yan , Zhiqian Guo , Shu Quan

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 412

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :412 DOI: 10.1002/agt2.412
RESEARCH ARTICLE

Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe

Author information +
History +
PDF

Abstract

The presence of protein aggregates in numerous human diseases underscores the significance of detecting these aggregates to comprehend disease mechanisms and develop novel therapeutic approaches for combating these disorders. Despite the development of various biosensors and fluorescent probes that selectively target amyloid fibers or amorphous aggregates, there is still a lack of tools capable of simultaneously detecting both types of aggregates. Herein, we demonstrate the quantitative discernment of amorphous aggregates by QM-FN-SO3, an aggregationinduced emission (AIE) probe initially designed for detecting amyloid fibers. This probe easily penetrates the membranes of the widely-used prokaryotic model organism Escherichia coli, enabling the visualization of both amorphous aggregates and amyloid fibers through near-infrared fluorescence. Notably, the probe exhibits sensitivity in distinguishing the varying aggregation propensities of proteins, regardless of whether they form amorphous aggregates or amyloid fibers in vivo. These properties contribute to the successful application of the QM-FN-SO3 probe in the subsequent investigation of the antiaggregation activities of two outer membrane protein (OMP) chaperones, both in vitro and in their physiological environment. Overall, our work introduces a near-infrared fluorescent chemical probe that can quantitatively detect amyloid fibers and amorphous aggregates with high sensitivity in vitro and in vivo. Furthermore, it demonstrates the applicability of the probe in chaperone biology and its potential as a high-throughput screening tool for protein aggregation inhibitors and folding factors.

Keywords

aggregation-induced emission / fluorescence / molecular chaperone / protein aggregation

Cite this article

Download citation ▾
Wei He, Yuanyuan Yang, Yuhui Qian, Zhuoyi Chen, Yongxin Zheng, Wenping Zhao, Chenxu Yan, Zhiqian Guo, Shu Quan. Fluorogenic sensing of amorphous aggregates, amyloid fibers, and chaperone activity via a near-infrared aggregation-induced emission-active probe. Aggregate, 2024, 5(1): 412 DOI:10.1002/agt2.412

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Soto, S. Pritzkow, Nat. Neurosci. 2018, 21, 1332.

[2]

H. Olzscha, Biol. Chem. 2019, 400, 895.

[3]

D. Balchin, M. Hayer-Hartl, F. U. Hartl, FEBS Lett. 2020, 594, 2770.

[4]

D. Balchin, M. Hayer-Hartl, F. U. Hartl, Science 2016, 353, aac4354.

[5]

Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. U. Hartl, Annu. Rev. Biochem. 2013, 82, 323.

[6]

S. Horowitz, P. Koldewey, F. Stull, J. C. Bardwell, Curr. Opin. Struct. Biol. 2018, 48, 1.

[7]

F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21.

[8]

F. Chiti, C. M. Dobson, Annu. Rev. Biochem. 2017, 86, 27.

[9]

A. Kaushik, R. D. Jayant, S. Tiwari, A. Vashist, M. Nair, Biosens. Bioelectron. 2016, 80, 273.

[10]

Y. Zhang, G. Figueroa-Miranda, C. Zafiu, D. Willbold, A. Offenhäusser, D. Mayer, ACS Sens. 2019, 4, 3042.

[11]

S. S. Li, C. W. Lin, K. C. Wei, C. Y. Huang, P. H. Hsu, H. L. Liu, Y. J. Lu, S. C. Lin, H. W. Yang, C. C. Ma, Sci. Rep. 2016, 6, 25155.

[12]

Y. Zheng, L. Zhang, J. Zhao, L. Li, M. Wang, P. Gao, Q. Wang, X. Zhang, W. Wang, Theranostics 2022, 12, 2095.

[13]

Y. Zhang, B. Ren, D. Zhang, Y. Liu, M. Zhang, C. Zhao, J. Zheng, J. Mater. Chem. B 2020, 8, 6179.

[14]

A. Aliyan, N. P. Cook, A. A. Martí, Chem. Rev. 2019, 119, 11819.

[15]

D. Shen, Y. L. Bai, Y. Liu, ChemBioChem 2022, 23, e202100443.

[16]

M. M. Xu, W. M. Ren, X. C. Tang, Y. H. Hu, H. Y. Zhang, Acta Pharmacol. Sin. 2016, 37, 719.

[17]

M. G. Iadanza, M. P. Jackson, E. W. Hewitt, N. A. Ranson, S. E. Radford, Nat. Rev. Mol. Cell Biol. 2018, 19, 755.

[18]

M. R. Sawaya, M. P. Hughes, J. A. Rodriguez, R. Riek, D. S. Eisenberg, Cell 2021, 184, 4857.

[19]

Q. Xu, Y. Ma, Y. Sun, D. Li, X. Zhang, C. Liu, Aggregate 2023, 4, e333.

[20]

M. Groenning, J. Chem. Biol. 2010, 3, 1.

[21]

E. I. Yakupova, L. G. Bobyleva, I. M. Vikhlyantsev, A. G. Bobylev, Biosci. Rep. 2019, 39, BSR20181415.

[22]

Y. Tang, D. Zhang, Y. Zhang, Y. Liu, L. Cai, E. Plaster, J. Zheng, J. Mater. Chem. B 2022, 10, 2280.

[23]

Y. Zhou, J. Hua, D. Ding, Y. Tang, Biomaterials 2022, 286, 121605.

[24]

Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, X. Zhang, J. Am. Chem. Soc. 2018, 140, 7381.

[25]

B. Shen, K. H. Jung, S. Ye, C. A. Hoelzel, C. H. Wolstenholme, H. Huang, Y. Liu, X. Zhang, Aggregate 2022, 4, e239.

[26]

S. Ye, C. H. Hsiung, Y. Tang, X. Zhang, Acc. Chem. Res. 2022, 55, 381.

[27]

K. L. Zapadka, F. J. Becher, A. L. G. dos Santos, S. E. Jackson, Interface Focus 2017, 7, 20170030.

[28]

S. D. Stranks, H. Ecroyd, S. Van Sluyter, E. J. Waters, J. A. Carver, L. von Smekal, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 051907.

[29]

Y. Yoshimura, Y. Lin, H. Yagi, Y. H. Lee, H. Kitayama, K. Sakurai, M. So, H. Ogi, H. Naiki, Y. Goto, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 14446.

[30]

P. Constantinescu, R. A. Brown, A. R. Wyatt, M. Ranson, M. R. Wilson, J. Biol. Chem. 2017, 292, 14425.

[31]

H. Jozawa, M. G. Kabir, T. Zako, M. Maeda, K. Chiba, Y. Kuroda, FEBS Lett. 2016, 590, 3501.

[32]

L. Breydo, J. W. Wu, V. N. Uversky, Biochim. Biophys. Acta 2012, 1822, 261.

[33]

D. Shen, W. Jin, Y. Bai, Y. Huang, H. Lyu, L. Zeng, M. Wang, Y. Tang, W. Wan, X. Dong, Z. Gao, H. L. Piao, X. Liu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 16067.

[34]

W. Zhang, F. Huo, C. Yin, J. Mater. Chem. B 2018, 6, 6919.

[35]

W. Fu, C. Yan, Z. Guo, J. Zhang, H. Zhang, H. Tian, W. H. Zhu, J. Am. Chem. Soc. 2019, 141, 3171.

[36]

N. Chamachi, A. Hartmann, M. Q. Ma, A. Svirina, G. Krainer, M. Schlierf, Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2118919119.

[37]

B. Schiffrin, A. N. Calabrese, P. W. A. Devine, S. A. Harris, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Struct. Mol. Biol. 2016, 23, 786.

[38]

A. N. Calabrese, B. Schiffrin, M. Watson, T. K. Karamanos, M. Walko, J. R. Humes, J. E. Horne, P. White, A. J. Wilson, A. C. Kalli, R. Tuma, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Commun. 2020, 11, 2155.

[39]

S. E. Rollauer, M. A. Sooreshjani, N. Noinaj, S. K. Buchanan, Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20150023.

[40]

J. G. Sklar, T. Wu, D. Kahne, T. J. Silhavy, Genes Dev. 2007, 21, 24 73.

[41]

X. Ge, R. Wang, J. Ma, Y. Liu, A. N. Ezemaduka, P. R. Chen, X. M. Fu, Z. Y. Chang, FEBS J. 2014, 281, 1226.

[42]

H. Kim, K. Wu, C. Lee, Front. Mol. Biosci. 2021, 8, 678697.

[43]

B. M. Burmann, S. Hiller, Chimia 2012, 66, 759.

[44]

V. Sachsenhauser, X. X. Deng, H. H. Kim, M. Jankovic, J. C. A. Bardwell, ACS Chem. Biol. 2020, 15, 1078.

[45]

C. Ren, X. Wen, J. Mencius, S. Quan, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2101618118.

[46]

D. Chakraborty, J. E. Straub, D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 19926.

[47]

P. Nedumpully-Govindan, F. Ding, Sci. Rep. 2015, 5, 8240.

[48]

Y. Lin, H. Im, L. T. Diem, S. Ham, Biochem. Biophys. Res. Commun. 2019, 510, 442.

[49]

J. C. Saunders, L. M. Young, R. A. Mahood, M. P. Jackson, C. H. Revill, R. J. Foster, D. A. Smith, A. E. Ashcroft, D. J. Brockwell, S. E. Radford, Nat. Chem. Biol. 2016, 12, 94.

[50]

Y. Xu, R. Maya-Martinez, N. Guthertz, G. R. Heath, I. W. Manfield, A. L. Breeze, F. Sobott, R. Foster, S. E. Radford, Nat. Commun. 2022, 13, 1040.

[51]

G. Mas, J. Thoma, S. Hiller, Subcell. Biochem. 2019, 92, 169.

[52]

M. Kumar, Y. N. Hong, D. C. Thorn, H. Ecroyd, J. A. Carver, Anal. Chem. 2017, 89, 9322.

[53]

C. Yan, J. Dai, Y. Yao, W. Fu, H. Tian, W. H. Zhu, Z. Guo, Nat. Protoc. 2023, 18, 1316.

[54]

S. Quan, L. Wang, E. V. Petrotchenko, K. A. Makepeace, S. Horowitz, J. Yang, Y. Zhang, C. H. Borchers, J. C. Bardwell, eLife 2014, 3, e01584.

[55]

B. M. Burmann, C. Wang, S. Hiller, Nat. Struct. Mol. Biol. 2013, 20, 1265.

[56]

W. He, G. Yu, T. Li, L. Bai, Y. Yang, Z. Xue, Y. Pang, D. Reichmann, S. Hiller, L. He, M. Liu, S. Quan, mBio 2021, 12, e0213021.

[57]

W. He, J. Zhang, V. Sachsenhauser, L. Wang, J. C. A. Bardwell, S. Quan, J. Biol. Chem. 2020, 295, 14488.

[58]

Y. Li, J. Han, Y. Zhang, F. Cao, Z. Liu, S. Li, J. Wu, C. Hu, Y. Wang, J. Shuai, J. Chen, L. Cao, D. Li, P. Shi, C. Tian, J. Zhang, Y. Dou, G. Li, Y. Chen, M. Lei, Nature 2016, 530, 447.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

297

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/