Multifunctional Ultra-Bright Plasmonic Gold@Fluorescence Nanoprobe for Biomedical Applications

Caiping Ding , Wenjing Li , Xiaolin Huang , Ben Zhong Tang , Youju Huang

Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e744

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (5) : e744 DOI: 10.1002/agt2.744
REVIEW

Multifunctional Ultra-Bright Plasmonic Gold@Fluorescence Nanoprobe for Biomedical Applications

Author information +
History +
PDF

Abstract

Metal-enhanced fluorescence (MEF) represents a captivating phenomenon that transpires when fluorophores are situated in close vicinity to the surface of metallic nanostructures, leading to a nuanced augmentation of their fluorescent characteristics. Given its efficacy in enhancing excitation rates, quantum yield, and photostability, MEF has firmly established itself as a highly valuable tool for augmenting biosensor sensitivity, bioimaging clarity, and intensifying therapeutic responses. Notably, plasmonic gold nanostructures, inherently advantageous for MEF, have been widely utilized in signal amplification, fluorescent labeling, and theranostics. In this endeavor, we undertake a comprehensive examination of MEF-enabled gold nanostructures, meticulously analyzing their fundamental enhancement mechanisms, crucial influencing factors, and diverse modes of enhancement. Furthermore, we spotlight the exemplary applications of these nanostructures in biosensing, bioimaging, and theranostics, underscoring their revolutionary potential. Ultimately, we offer a glimpse into the future prospects for improvement and the challenges that beset gold-based MEF. Our attention is steadfastly directed toward the essential scientific questions and technical hurdles that remain to be surmounted, inviting readers to partake in an exciting exploration of this dynamic and promising field.

Keywords

biomedical applications / metal-enhanced fluorescence / multifunctional nanoprobe / plasmonic gold nanoparticle

Cite this article

Download citation ▾
Caiping Ding, Wenjing Li, Xiaolin Huang, Ben Zhong Tang, Youju Huang. Multifunctional Ultra-Bright Plasmonic Gold@Fluorescence Nanoprobe for Biomedical Applications. Aggregate, 2025, 6(5): e744 DOI:10.1002/agt2.744

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Wang, M. Wang, G. Zheng, Z. Dai, and Y. Ma, “Recent Progress in Sensing Application of Metal Nanoarchitecture-Enhanced Fluorescence,” Nanoscale Advances 3 (2021): 2448-2465.

[2]

a) P. P. Pompa, L. Martiradonna, A. D. Torre, et al., “Metal-Enhanced Fluorescence of Colloidal Nanocrystals with Nanoscale Control,” Nature Nanotechnology 1 (2006): 126-130. b) P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Physical Review Letter 96 (2006): 113002. c) G. P. G. Felicia Tam, B. R. Johnson, and N. J. Halas, “Plasmonic Enhancement of Molecular Fluorescence,” Nano Letters 7 (2007): 496-501. d) S. W. R. Sebastian Mackowski, A. J. Maier, T. H. P. Brotosudarmo, et al., “Metal-Enhanced Fluorescence of Chlorophylls in Single Light-Harvesting Complexes,” Nano Letters 8 (2008): 558-564.

[3]

a) X. C. Clemens Burda, R. Narayanan, and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes,” Chemical Reviews 105 (2005): 1025-1102. b) Y. Y. Cai, Y. C. Choi, and C. R. Kagan, “Chemical and Physical Properties of Photonic Noble-Metal Nanomaterials,” Advanced Materials 35 (2023): 2108104. c) D. Semeniak, D. F. Cruz, A. Chilkoti, and M. H. Mikkelsen, “Plasmonic Fluorescence Enhancement in Diagnostics for Clinical Tests at Point-of-Care: A Review of Recent Technologies,” Advanced Materials 35 (2023): 2107986.

[4]

a) E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311 (2006): 189-193. b) A. D. William L. Barnes, and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature 424 (2003): 824-830.

[5]

K. H. Drexhage, “Influence of a Dielectric Interface on Fluorescence Decay Time,” Journal of Luminescence 1-2 (1970): 693-701.

[6]

a) J. Gersten and A. Nitzan, “Spectroscopic Properties of Molecules Interacting with Small Dielectric Particles,” Journal of Chemical Physics 75 (1981): 1139-1152. b) D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, “The Enhancement of Raman Scattering, Resonance Raman Scattering, and Fluorescence from Molecules Adsorbed on a Rough Silver Surface,” Journal of Chemical Physics 78 (1983): 5324-5338.

[7]

M. E. L. A. Leitner, S. Draxler, M. Riegler, and F. R. Aussenegg, “Fluorescence Properties of Dyes Adsorbed to Silver Islands, Investigated by Picosecond Techniques,” Applied Physics B 36 (1985): 105-109.

[8]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-Enhanced Fluorescence: An Emerging Tool in Biotechnology,” Current Opinion in Biotechnology 16 (2005): 55-62.

[9]

a) Y. Jeong, Y. M. Kook, K. Lee, and W. G. Koh, “Metal Enhanced Fluorescence (MEF) for Biosensors: General Approaches and a Review of Recent Developments,” Biosensors & Bioelectronics 111 (2018): 102-116. b) J. Ma, X. Wang, J. Feng, C. Huang, and Z. Fan, “Individual Plasmonic Nanoprobes for Biosensing and Bioimaging: Recent Advances and Perspectives,” Small 17 (2021): 2004287.

[10]

a) Y. J. Hang, N.i. Q. Wu, and N. Q. Wu, “Plasmonic Silver and Gold Nanoparticles: Shape- and Structure-Modulated Plasmonic Functionality for Point-of-Caring Sensing, Bio-Imaging and Medical Therapy,” Chemical Society Reviews 53 (2024): 2932-2971. b) Y. X. Lu and M. Li, “Rational Design of Near-Infrared II Plasmonic Optofunctional Materials for Diagnostic and Therapeutic Applications,” Advanced Functional Materials 34 (2024): 2312753.

[11]

S. Fossati, S. Hageneder, S. Menad, E. Maillart, and J. Dostalek, “Multiresonant Plasmonic Nanostructure for Ultrasensitive Fluorescence Biosensing,” Nanophotonics 9 (2020): 3673-3685.

[12]

Q. Huang, Z. Huang, G. Meng, J. R. Lakowicz, and Y. Fu, “Plasmonic Nanorod Arrays for Enhancement of Single-molecule Detection,” Chemical Communications 49 (2013): 11743-11745.

[13]

a) M. A. Badshah, N. Y. Koh, A. W. Zia, N. Abbas, Z. Zahra, and M. W. Saleem, “Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing,” Nanomaterials 10 no. 9 (2020): 1749. b) H. Altug, S. H. Oh, S. A. Maier, and J. Homola, “Advances and Applications of Nanophotonic Biosensors,” Nature Nanotechnology 17 (2022): 5-16.

[14]

M. Peng, F. Sun, N. Na, and J. Ouyang, “Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection,” Small 16 (2020): e2000460.

[15]

J. H. Choi, T. Ha, M. Shin, S. N. Lee, and J. W. Choi, “Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis,” Biomedicines 9 no. 8 (2021): 928.

[16]

a) M. R. Younis, G. He, B. Gurram, J. Lin, and P. Huang, “Recent Advances in Gold Nanorods-Based Cancer Theranostics,” Advanced NanoBiomed Research 1 no. 12 (2021): 2100029. b) Y. J. Hang, J. Boryczka, and N. Q. Wu, “Visible-Light and Near-Infrared Fluorescence and Surface-Enhanced Raman Scattering Point-of-Care Sensing and Bio-Imaging: A Review,” Chemical Society Reviews 51 (2022): 329-375.

[17]

a) J. E. Park, J. Kim, and J. M. Nam, “Emerging Plasmonic Nanostructures for Controlling and Enhancing Photoluminescence,” Chemical Science 8 (2017): 4696-4704. b) J. Dong, Z. L. Zhang, W. Gao, J. H. Liu, and E. J. He, “Surface Enhanced Fluorescence by Plasmonic Nanostructures,” Reviews in Plasmonics (2015): 387-415. c) W. P. Liu, K. W. Chung, S. B. Yu, and L. P. Lee, “Nanoplasmonic Biosensors for Environmental Sustainability and human Health,” Chemical Society Reviews 53 (2024): 10491-10522.

[18]

R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Physical Review 106 (1957): 874-881.

[19]

a) H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988). b) R. L. Wang, H. Z. Zhang, Q. Y. Liu, et al., “Operando Monitoring of Ion Activities in Aqueous Batteries with Plasmonic Fiber-Optic Sensors,” Nature Communications 13 (2022): 547.

[20]

a) G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Advanced Materials 25 (2013): 3264-3294. b) K. H. Kim, S. Jo, S. E. Seo, et al., “Ultrasensitive Gas Detection Based on Electrically Enhanced Nanoplasmonic Sensor with Graphene-Encased Gold Nanorod,” ACS Sensors 8 no. 6 (2023): 2169-2178.

[21]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-Nanoparticle Plasmonics,” Laser & Photonics Reviews 2 (2008): 136-159.

[22]

T. T. Kosuke Sugawa, H. Tahara, D. Yamaguchi, et al., “Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength Dependence of Quenching and Enhancement Effects,” ACS Nano 7 (2013): 9997-10010.

[23]

a) M. R. E. Dulkeith, T. A. Klar, and J. Feldmann, “Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression,” Nano Letters 5 (2005): 585-589. b) S. Barazzouk and S. Hotchandani, “Photoinduced Electron Transfer Between Chlorophyll a and Gold Nanoparticles,” Journal of Physical Chemistry B 109 (2005): 716-723.

[24]

M. P. S. T. L. Jennings and G. F. Strouse, “Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity,” Journal of the American Chemical Society 128 (2006): 5462-5467.

[25]

Y. T. Tang, Y. H. Xiang, Y. Yang, et al., “Nanostructured Bubbles-Enhanced Fluorescence for Ultrasensitive Portable MicroRNA Detection,” Advanced Functional Materials 35 (2024): 2413832.

[26]

a) P. Strobbia, E. Languirand, and B. M. Cullum, “Recent Advances in Plasmonic Nanostructures for Sensing: A Review,” Optical Engineering 54 (2015): 100902. b) E. Petryayeva and U. J. Krull, “Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review,” Analytica Chimica Acta 706 (2011): 8-24. c) S. Mu, G. D. Samolyuk, S. Wimmer, et al., “Uncovering Electron Scattering Mechanisms in NiFeCoCrMn Derived Concentrated Solid Solution and High Entropy Alloys,” NPJ Computational Materials 5, https://doi.org/10.1038/s41524-018-0138-z. d) X. W. Ou, Y. Q. Liu, M. X. Zhang, L. Hua, and S. S. Zhan, “Plasmonic Gold Nanostructures for Biosensing and Bioimaging,” Microchimica Acta 188 (2021): 304.

[27]

a) A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and its Application to Hydrogen Sensing,” Nano Letters 11 (2011): 4366-4369. b) Z. Y. Christoph Langhammer, I. Zoric´, and B. Kasemo, “Plasmonic Properties of Supported Pt and Pd Nanostructures,” Nano Letters 6 (2006): 833-838.

[28]

a) Q. Ruan, L. Shao, Y. Shu, J. Wang, and H. Wu, “Growth of Monodisperse Gold Nanospheres with Diameters from 20 nm to 220 nm and Their Core/Satellite Nanostructures,” Advanced Optical Materials 2 (2014): 65-73. b) J. Lee, J. H. Huh, K. Kim, and S. Lee, “DNA Origami-Guided Assembly of the Roundest 60–100 nm Gold Nanospheres Into Plasmonic Metamolecules,” Advanced Functional Materials 28 no. 15 (2018): 1707309. c) T. Zhang, X. Li, C. Li, W. Cai, and Y. Li, “One-Pot Synthesis of Ultrasmooth, Precisely Shaped Gold Nanospheres via Surface Self-Polishing Etching and Regrowth,” Chemistry of Materials 33 (2021): 2593-2603.

[29]

a) X. Ye, Y. Gao, J. Chen, D. C. Reifsnyder, C. Zheng, and C. B. Murray, “Seeded Growth of Monodisperse Gold Nanorods Using Bromide-Free Surfactant Mixtures,” Nano Letters 13 (2013): 2163-2171. b) X. Ye, C. Zheng, J. Chen, Y. Gao, and C. B. Murray, “Using Binary Surfactant Mixtures to Simultaneously Improve the Dimensional Tunability and Monodispersity in the Seeded Growth of Gold Nanorods,” Nano Letters 13 (2013): 765-771. c) X. C. Ye, L. H. Jin, H. Caglayan, et al., “Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods Through the Use of Aromatic Additives,” ACS Nano 6 (2012): 2804-2817.

[30]

a) M. C. P. Leonardo Scarabelli, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marza´n, “Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering,” ACS Nano 8 (2014): 5833-5842. b) L. Chen, F. Ji, Y. Xu, et al., “High-Yield Seedless Synthesis of Triangular Gold Nanoplates Through Oxidative Etching,” Nano Letters 14 (2014): 7201-7206. c) C. Kuttner, M. Mayer, M. Dulle, et al., “Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance,” ACS Applied Materials & Interfaces 10 (2018): 11152-11163.

[31]

Q. Zhang, N. Large, and H. Wang, “Gold Nanoparticles with Tipped Surface Structures as Substrates for Single-Particle Surface-Enhanced Raman Spectroscopy: Concave Nanocubes, Nanotrisoctahedra, and Nanostars,” ACS Applied Materials & Interfaces 6 (2014): 17255-17267.

[32]

a) H. L. Wu, C. H. Kuo, and M. H. Huang, “Seed-Mediated Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic Dodecahedral Structures,” Langmuir 26 (2010): 12307-12313. b) J. E. Park, Y. Lee, and J. M. Nam, “Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering,” Nano Letters 18 (2018): 6475-6482.

[33]

a) Y. L. Tsz Him Chow, X. M. Cui, W. Z. Lu, X. L. Zhuo, and J. F. Wang, “Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres,” Small 15 (2019): 1902608. b) J. S. Wi, J. Park, H. Kang, D. Jung, S. W. Lee, and T. G. Lee, “Stacked Gold Nanodisks for Bimodal Photoacoustic and Optical Coherence Imaging,” ACS Nano 11 (2017): 6225-6232.

[34]

a) Q. Li, X. Zhuo, S. Li, Q. Ruan, Q. H. Xu, and J. Wang, “Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties,” Advanced Optical Materials 3 (2015): 801-812. b) T. H. Chow, N. Li, X. Bai, X. Zhuo, L. Shao, and J. Wang, “Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles,” Accounts of Chemical Research 52 (2019): 2136-2146.

[35]

M. Ha, J. H. Kim, M. You, Q. Li, C. Fan, and J. M. Nam, “Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures,” Chemical Reviews 119 (2019): 12208-12278.

[36]

a) Y. Zhuang, L. Liu, X. Wu, et al., “Size and Shape Effect of Gold Nanoparticles in “Far-Field” Surface Plasmon Resonance,” Particle & Particle Systems Characterization 36 no. 1 (2019): 1800077. b) B. S. Hoener, H. Zhang, T. S. Heiderscheit, et al., “Spectral Response of Plasmonic Gold Nanoparticles to Capacitive Charging: Morphology Effects,” Journal of Physical Chemistry Letters 8 (2017): 2681-2688.

[37]

C. Liang, J. Luan, Z. Wang, et al., “Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays,” ACS Applied Materials & Interfaces 13 (2021): 11414-11423.

[38]

G. Weng, X. Shen, J. Li, J. Zhu, J. Yang, and J. Zhao, “Multipole Plasmon Resonance in Gold Nanobipyramid: Effects of Tip Shape and Size,” Physics Letters A 412 (2021): 127577.

[39]

C. Niu, Q. Song, G. He, N. Na, and J. Ouyang, “Near-Infrared-Fluorescent Probes for Bioapplications Based on Silica-Coated Gold Nanobipyramids with Distance-Dependent Plasmon-Enhanced Fluorescence,” Analytical Chemistry 88 (2016): 11062-11069.

[40]

J. Wang, S. Wang, L. Mi, and J. Liu, “Aspect Ratio Dependence of the Enhancement of Fluorescence Intensity by Gold Nanobipyramids for Cancer Cell Imaging and Photodynamic Therapy,” Laser Physics 28 no. 7 (2018): 075602.

[41]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon Resonances of a Gold Nanostar,” Nano Letters 7 (2007): 729-732.

[42]

X. M. Cao, S. Chen, M. Bao, H. C. Shi, and W. Li, “Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields,” Progress in Chemistry 30 (2018): 1380-1391.

[43]

N. Pazos-Perez, L. Guerrini, and R. A. Alvarez-Puebla, “Plasmon Tunability of Gold Nanostars at the Tip Apexes,” ACS Omega 3 (2018): 17173-17179.

[44]

L. Zhou, K. J. Chen, J. D. Ramsey, C. K. Almlie, and S. M. Burrows, “Lighting Up Plasmonic Nanostar Colloids for Metal-Enhanced Fluorescence Under Two-Photon Near-Infrared Excitation,” Journal of Physical Chemistry C 122 (2018): 19823-19830.

[45]

I. G. Theodorou, Q. Jiang, L. Malms, et al., “Fluorescence Enhancement from Single Gold Nanostars: Towards Ultra-bright Emission in the First and Second Near-Infrared Biological Windows,” Nanoscale 10 (2018): 15854-15864.

[46]

I. G. Theodorou, Z. Jawad, Q. F. Jiang, et al., “Gold Nanostar Substrates for Metal-Enhanced Fluorescence Through the First and Second Near-Infrared Windows,” Chemistry of Materials 29 (2017): 6916-6926.

[47]

W. N. Fang, S. Liu, L. H. Wang, C. H. Fang, and H. J. Liu, “Synthesis and Applications of Triangular Gold Nanoplates,” Progress in Chemistry 29 (2017): 459-466.

[48]

P. Zhan, T. Wen, Z. G. Wang, et al., “DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering,” Angewandte Chemie International Edition 57 (2018): 2846-2850.

[49]

F. Zhang, J. Zhu, H. Q. An, J. J. Li, and J. W. Zhao, “A Two-Step Approach to Realize Size- and Shape-selective Separation of Crude Gold Nanotriangles with High Purification,” Journal of Materials Chemistry C 4 (2016): 568-580.

[50]

I. G. Theodorou, Z. A. Jawad, H. Qin, et al., “Significant Metal Enhanced Fluorescence of AgS Quantum Dots in the Second Near-Infrared Window,” Nanoscale 8 (2016): 12869-12873.

[51]

S. E. Sara, J. Chen, Y. Sun, et al., “Gold Nanocages: Synthesis, Properties, and Applications,” Accounts of Chemical Research 41 (2008): 1587-1595.

[52]

L. P. A. Camposeo, R. Manco, Y. Wang, et al., “Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages,” ACS Nano 9 (2015): 10047-10054.

[53]

J. Pang, I. G. Theodorou, A. Centeno, et al., “Gold Nanodisc Arrays as Near Infrared Metal-Enhanced Fluorescence Platforms with Tuneable Enhancement Factors,” Journal of Materials Chemistry C 5 (2017): 917-925.

[54]

a) C. K. Zhi Li, V. I. Paˆ rvulescu, and R. Richards, “Size Tunable Gold Nanorods Evenly Distributed in the Channels of Mesoporous Silica,” ACS Nano 2 (2008): 1205-1212. b) S. Damm, S. Fedele, A. Murphy, et al., “Plasmon Enhanced Fluorescence Studies from Aligned Gold Nanorod Arrays Modified with SiO2 Spacer Layers,” Applied Physics Letters 106 no. 18 (2015): 183109. c) H. Li, J. Kang, J. Yang, and B. Wu, “Distance Dependence of Fluorescence Enhancement in Au Nanoparticle@Mesoporous Silica@Europium Complex,” Journal of Physical Chemistry C 120 (2016): 16907-16912. d) A. Heuer-Jungemann, N. Feliu, I. Bakaimi, et al., “The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles,” Chemical Reviews 119 (2019): 4819-4880. e) C. Hanske, M. N. Sanz-Ortiz, and L. M. Liz-Marzan, “Silica-Coated Plasmonic Metal Nanoparticles in Action,” Advanced Materials 30 (2018): e1707003. f) M. Wang, A. Hoff, J. E. Doebler, S. R. Emory, and Y. Bao, “Dumbbell-Like Silica Coated Gold Nanorods and Their Plasmonic Properties,” Langmuir 35 (2019): 16886-16892. g) V. Pellas, D. Hu, Y. Mazouzi, et al., “Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications,” Biosensors10 (2020): 146. h) L. R. Rowe, B. S. Chapman, and J. B. Tracy, “Understanding and Controlling the Morphology of Silica Shells on Gold Nanorods,” Chemistry of Materials 30 (2018): 6249-6258. i) M. Adelt, D. A. MacLaren, D. J. S. Birch, and Y. Chen, “Morphological Changes of Silica Shells Deposited on Gold Nanorods: Implications for Nanoscale Photocatalysts,” ACS Applied Nano Materials 4 (2021): 7730-7738. j) A. Fernandez-Lodeiro, J. Djafari, J. Fernandez-Lodeiro, et al., “Synthesis of Mesoporous Silica Coated Gold Nanorods Loaded with Methylene Blue and its Potentials in Antibacterial Applications,” Nanomaterials 11 no. 5 (2021): 1338. k) O. Pavelka, S. Dyakov, J. Vesely, et al., “Optimizing Plasmon Enhanced Luminescence in Silicon Nanocrystals by Gold Nanorods,” Nanoscale 13 (2021): 5045-5057. l) D. G. Hong, E. J. Jo, D. Bang, et al., “Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor,” ACS Nano 17 (2023): 16607-16619.

[55]

W. Rao, D. Wang, T. Kups, et al., “Nanoporous Gold Nanoparticles and Au/Al2O3 Hybrid Nanoparticles with Large Tunability of Plasmonic Properties,” ACS Applied Materials & Interfaces 9 (2017): 6273-6281.

[56]

a) Y. Fang, Y. Jiao, K. Xiong, et al., “Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO2 Nanostructures,” Nano Letters 15 (2015): 4059-4065. b) J. Ma and S. Gao, “Plasmon-Induced Electron–Hole Separation at the Ag/TiO2 (110) Interface,” ACS Nano 13 (2019): 13658-13667. c) J. Abed, F. Alexander, I. Taha, N. Rajput, C. Aubry, and M. Jouiad, “Investigation of Broadband Surface Plasmon Resonance of Dewetted Au Structures on TiO2 by Aperture-Probe SNOM and FDTD Simulations,” Plasmonics 14 (2018): 205-218. d) F. Gao, G. He, H. Yin, et al., “Titania-Coated 2D Gold Nanoplates as Nanoagents for Synergistic Photothermal/Sonodynamic Therapy in the Second Near-Infrared Window,” Nanoscale 11 (2019): 2374-2384.

[57]

a) E. J. Hong, P. Sivakumar, V. Ravichandran, D. G. Choi, Y. S. Kim, and M. S. Shim, “Pro-Oxidant Drug-Loaded Au/ZnO Hybrid Nanoparticles for Cancer-Specific Chemo-Photodynamic Combination Therapy,” ACS Biomaterials Science & Engineering 5 (2019): 5209-5217. b) J. Zhou, J. Zhang, H. Yang, et al., “Plasmon-induced Hot Electron Transfer in Au– ZnO Heterogeneous Nanorods for Enhanced SERS,” Nanoscale 11 (2019): 11782-11788.

[58]

R. B. Krishanu Ray and J. R. Lakowicz, “Polyelectrolyte Layer-by-Layer Assembly to Control the Distance Between Fluorophores and Plasmonic Nanostructures,” Chemistry of Materials 19 (2007): 5902-5909.

[59]

F. Ge and X. Yang, “Tunable Photonic Crystals-Enhanced Fluorescence by an Assembly Approach of Polyelectrolyte Interlayer,” Journal of Materials Science 53 (2017): 4840-4847.

[60]

S. Sun, I. L. Rasskazov, P. S. Carney, T. Zhang, and A. Moroz, “Critical Role of Shell in Enhanced Fluorescence of Metal-Dielectric Core-Shell Nanoparticles,” Journal of Physical Chemistry C 124 (2020): 13365-13373.

[61]

B. Song, Z. Jiang, Z. Liu, et al., “Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision,” ACS Nano 14 (2020): 14769-14778.

[62]

M. W. K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Fluorescent Core−Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms,” Journal of the American Chemical Society 129 (2007): 1524-1525.

[63]

I. C. Serrano, C. Vazquez-Vazquez, A. M. Adams, et al., “The Effect of the Silica Thickness on the Enhanced Emission in Single Particle Quantum Dots Coated with Gold Nanoparticles,” RSC Advances 3 (2013): 10691.

[64]

R. Bardhan, N. K. Grady, and N. J. Halas, “Nanoscale Control of Near-Infrared Fluorescence Enhancement Using Au Nanoshells,” Small 4 (2008): 1716-1722.

[65]

Y. Zhai, L. Meng, L. Xu, et al., “Strong Fluorescence Enhancement with Silica-Coated Au Nanoshell Dimers,” Plasmonics 12 (2016): 263-269.

[66]

J. H. Choi, J. Lim, M. Shin, S. H. Paek, and J. W. Choi, “CRISPR-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis,” Nano Letters 21 (2021): 693-699.

[67]

N. K. G. R. Bardhan, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence Enhancement by Au Nanostructures: Nanoshells and Nanorods,” ACS Nano 3 (2009): 744-752.

[68]

a) K. Ray and J. R. Lakowicz, “Metal-Enhanced Fluorescence Lifetime Imaging and Spectroscopy on a Modified SERS Substrate,” Journal of Physical Chemistry C Nano Interfaces 117 no. 30 (2013): 15790-15797. b) Y. Fu, J. Zhang, and J. R. Lakowicz, “Silver-Enhanced Fluorescence Emission of Single Quantum Dot Nanocomposites,” Chemical Communications (2009): 313-315.

[69]

a) B. Miranda, K. Y. Chu, P. L. Maffettone, A. Q. Shen, and R. Funari, “Metal-Enhanced Fluorescence Immunosensor Based on Plasmonic Arrays of Gold Nanoislands on an Etched Glass Substrate,” ACS Applied Nano Materials 3 (2020): 10470-10478. b) B. D. Ventura, M. Gelzo, E. Battista, et al., “Biosensor for Point-of-Care Analysis of Immunoglobulins in Urine by Metal Enhanced Fluorescence from Gold Nanoparticles,” ACS Applied Materials & Interfaces 11 (2019): 3753-3762. c) D. D. Xu, Y. L. Deng, C. Y. Li, Y. Lin, and H. W. Tang, “Metal-Enhanced Fluorescent Dye-doped Silica Nanoparticles and Magnetic Separation: A Sensitive Platform for One-step Fluorescence Detection of Prostate Specific Antigen,” Biosensors & Bioelectronics 87 (2017): 881-887.

[70]

H. I. Peng, C. M. Strohsahl, K. E. Leach, T. D. Krauss, and B. L. Miller, “Label-Free DNA Detection on Nanostructured Ag Surfaces,” ACS Nano 3 (2009): 2265-2273.

[71]

a) Y. Tian, L. Zhang, and L. Wang, “DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing,” Biotechnology Journal 15 no. 1 (2020): 1800741. b) P. Jia, C. Ding, Z. Sun, et al., “DNA Precisely Regulated Au Nanorods/Ag2S Quantum Dots Satellite Structure for Ultrasensitive Detection of Prostate Cancer Biomarker,” Sensors and Actuators B Chemical 347 (2021): 130585.

[72]

A. D. Chowdhury, F. Nasrin, R. Gangopadhyay, et al., “Controlling Distance, Size and Concentration of Nanoconjugates for Optimized LSPR Based Biosensors,” Biosensors & Bioelectronics 170 (2020): 112657.

[73]

A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of Metal Particles with Adsorbed Dye Molecules: Absorption and Luminescence,” Optics Letters 5 (1980): 368.

[74]

K. M. Y. Chen and D. S. Ginger, “Dependence of Fluorescence Intensity on the Spectral Overlap Between Fluorophores and Plasmon Resonant Single Silver Nanoparticles,” Nano Letters 7 (2007): 690-696.

[75]

J. Asselin, P. Legros, A. Grégoire, and D. Boudreau, “Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles,” Plasmonics 11 (2016): 1369-1376.

[76]

H. Yuan, S. Khatua, P. Zijlstra, M. Yorulmaz, and M. Orrit, “Thousand-Fold Enhancement of Single-Molecule Fluorescence Near a Single Gold Nanorod,” Angewandte Chemie International Edition 52 (2013): 1217-1221.

[77]

J. D. Flynn, B. L. Haas, and J. S. Biteen, “Plasmon-Enhanced Fluorescence from Single Proteins in Living Bacteria,” Journal of Physical Chemistry C 120 (2015): 20512-20517.

[78]

a) X. Tian, L. C. Murfin, L. Wu, S. E. Lewis, and T. D. James, “Fluorescent Small Organic Probes for Biosensing,” Chemical Science 12 (2021): 3406-3426. b) H. H. Han, H. Tian, J. Y. Zang, et al., “Small-molecule Fluorescence-Based Probes for Interrogating Major Organ Diseases,” Chemical Society Reviews 50 (2021): 9391-9429.

[79]

H.-W. Liu, L. Chen, C. Xu, et al., “Recent Progresses in Small-Molecule Enzymatic Fluorescent Probes for Cancer Imaging,” Chemical Society Reviews 47 (2018): 7140-7180.

[80]

S. Pawar, A. Bhattacharya, and A. Nag, “Metal-Enhanced Fluorescence Study in Aqueous Medium by Coupling Gold Nanoparticles and Fluorophores Using a Bilayer Vesicle Platform,” ACS Omega 4 (2019): 5983-5990.

[81]

Y. Bian, S. Liu, Y. Zhang, et al., “Distance-Dependent Plasmon-Enhanced Fluorescence of Submonolayer Rhodamine 6G by Gold Nanoparticles,” Nanoscale Research Letters 16 (2021): 90.

[82]

a) X. He, Z. Zhao, L. H. Xiong, et al., “Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging,” Journal of the American Chemical Society 140 (2018): 6904-6911. b) F. Wurthner, “Aggregation-Induced Emission (AIE): A Historical Perspective,” Angewandte Chemie International Edition 59 (2020): 14192-14196. c) S. Liu, G. Feng, B. Z. Tang, and B. Liu, “Recent Advances of AIE Light-Up Probes for Photodynamic Therapy,” Chemical Science 12 (2021): 6488-6506. d) W. Xu, D. Wang, and B. Z. Tang, “NIR-II AIEgens: A Win–Win Integration Towards Bioapplications,” Angewandte Chemie International Edition 60 (2021): 7476-7487. e) Z. Li, X. Ji, H. Xie, and B. Z. Tang, “Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications,” Advanced Materials 33 (2021): e2100021. f) J. Peng, A. P. Tomsia, L. Jiang, B. Z. Tang, and Q. Cheng, “Stiff and Tough PDMS-MMT Layered Nanocomposites Visualized by AIE Luminogens,” Nature Communications 12 (2021): 4539. g) X. R. Chen, W. C. Zhan, H. Duan, et al., “Crescent-Shaped Janus Nanoassemblies of Gold Nanoparticles and AIEgens: Enhancing Plasmonic and Fluorescent Activities for Colorimetric and Ratiometric Fluorescence Lateral Flow Immunoassay,” Nano Today 58 (2024): 102452.

[83]

Y. Cui, C. Yuan, H. Tan, et al., “Plasmon-Enhanced Fluorescent Sensor Based on Aggregation-Induced Emission for the Study of Protein Conformational Transformation,” Advanced Functional Materials 29 no. 10 (2019): 1807211.

[84]

Y. Jia, S. Guo, Q. Han, et al., “Target-triggered and Controlled Release Plasmon-Enhanced Fluorescent AIE Probe for Conformational Monitoring of Insulin Fibrillation,” Journal of Materials Chemistry B 9 (2021): 5128-5135.

[85]

a) J. S. Pang, I. G. Theodorou, A. Centeno, et al., “Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement,” ACS Applied Materials & Interfaces 11 (2019): 23083-23092. b) L. K. Chin, J. Y. Yang, B. J. M. Chousterman, et al., “Dual-Enhanced Plasmonic Biosensing for Point-of-Care Sepsis Detection,” ACS Nano 17 no. 4 (2023): 3610-3619. c) J. M. Xu, M. Fu, C. Y. Ji, et al., “Plasmonic-Enhanced NIR-II Downconversion Fluorescence Beyond 1500 Nm from Core–Shell–Shell Lanthanide Nanoparticles,” Advanced Optical Materials 11 (2023): 2300477.

[86]

S. Luo, Q. Li, Y. Yang, et al., “Controlling Fluorescence Emission with Split-Ring-Resonator-Based Plasmonic Metasurfaces,” Laser & Photonics Reviews 11 no. 3 (2017): 1770035.

[87]

a) Z. Chen, Y. Peng, Y. Cao, et al., “Light-Driven Nano-Oscillators for Label-Free Single-Molecule Monitoring of MicroRNA,” Nano Letters 18 (2018): 3759-3765. b) P. Barya, Y. Y. Xiong, S. Shepherd, et al., “Photonic-Plasmonic Coupling Enhanced Fluorescence Enabling Digital-Resolution Ultrasensitive Protein Detection,” Small 19 (2023): 2207239.

[88]

a) J. H. Lee, J. H. Choi, S. T. D. Chueng, et al., “Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection,” ACS Nano 13 (2019): 8793-8803. b) J. Wang, Y. Gao, P. Liu, S. Xu, and X. Luo, “Core– Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy,” Analytical Chemistry 92 (2020): 15169-15178.

[89]

F. P. G. de Arquer, D. V. Talapin, V. I. Klimov, Y. Arakawa, M. Bayer, and E. H. Sargent, “Semiconductor Quantum Dots: Technological Progress and Future Challenges,” Science 373 no. 6555 (2021): eaaz8541.

[90]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots,” Nature Materials 10 (2011): 361-366.

[91]

D. Nepal, L. F. Drummy, S. Biswas, K. Park, and R. A. Vaia, “Large Scale Solution Assembly of Quantum Dot-Gold Nanorod Architectures with Plasmon Enhanced Fluorescence,” ACS Nano 7 (2013): 9064-9074.

[92]

K. Wu, J. Zhang, S. Fan, et al., “Plasmon-Enhanced Fluorescence of PbS Quantum Dots for Remote Near-Infrared Imaging,” Chemical Communications 51 (2015): 141-144.

[93]

K. Yang, X. Yin, Y. Yan, et al., “An Aqueous Gold Nanorod and CdSe Quantum Dots Hybrid Nanomaterial: A Potential Plasmon Enhanced Fluorescence Structure for Bio-Probe Fabrication,” Chemical Engineering Journal 426 (2021): 131571.

[94]

V. Krivenkov, P. Samokhvalov, A. Sanchez-Iglesias, M. Grzelczak, I. Nabiev, and Y. Rakovich, “Strong Increase in the Effective Two-Photon Absorption Cross-Section of Excitons in Quantum Dots due to the Nonlinear Interaction with Localized Plasmons in Gold Nanorods,” Nanoscale 13 (2021): 4614-4623.

[95]

D. R. Abujetas, R. Paniagua-Dominguez, and J. A. Sanchez-Gil, “Impedance-Matched, Double-Zero Optical Metamaterials Based on Weakly Resonant Metal Oxide Nanowires,” Photonics 5 (2018): 7.

[96]

a) J. Liu, Q. Wang, X. Sang, et al., “Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect,” Nanomaterials 11 (2021): 1037. b) M. C. T. Nguyen, H. Q. Nguyen, H. Kang, et al., “Metal Plasmon-Enhanced Lanthanide Fluorescent Nanoparticles for Monitoring Aqueous Copper Ions,” Materials Today Nano 24 (2023): 100380.

[97]

J. Dong, W. Gao, Q. Han, et al., “Plasmon-Enhanced Upconversion Photoluminescence: Mechanism and Application,” Reviews in Physics 4 (2019): 100026.

[98]

X. Qin, A. N. C. Neto, R. L. Longo, Y. Wu, O. L. Malta, and X. Liu, “Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles,” Journal of Physical Chemistry Letters 12 (2021): 1520-1541.

[99]

L. Lin, Z. Yu, Z. Wang, et al., “Plasmon-Enhanced Upconversion and Quantum-Cutting of Water-Soluble Au@SiO2/NaYF4:Tb3+,Yb3+@NaYF4 Nanocomposites,” Journal of Luminescence 214 (2019): 116598.

[100]

a) J. Yin, H. Zheng, A. Li, et al., “Plasmon-induced Double-Field-Enhanced Upconversion Nanoprobes with Near-Infrared Resonances for High-Sensitivity Optical Bio-Imaging,” Nanotechnology 32 (2021): 435201. b) C. W. Lin, S. N. Huang, M. Colangelo, et al., “Surface Plasmon Enhanced Upconversion Fluorescence in Short-Wave Infrared for In Vivo Imaging of Ovarian Cancer,” ACS Nano 16 (2022): 12930-12940. c) H. J. Xiong, E. Lacin, H. Ouyang, et al., “Probing Neuropeptide Volume Transmission In Vivo by Simultaneous Near-Infrared Light-Triggered Release and Optical Sensing,” Angewandte Chemie International Edition 61 (2022): e202206122.

[101]

S. Rohani, M. Quintanilla, S. Tuccio, et al., “Enhanced Luminescence, Collective Heating, and Nanothermometry in an Ensemble System Composed of Lanthanide-Doped Upconverting Nanoparticles and Gold Nanorods,” Advanced Optical Materials 3 (2015): 1606-1613.

[102]

Y. Xue, C. Ding, Y. Rong, et al., “Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter,” Small 13 (2017): 1701155.

[103]

K. Deng, L. Xu, X. Guo, et al., “Binary Nanoparticle Superlattices for Plasmonically Modulating Upconversion Luminescence,” Small 16 (2020): 2002066.

[104]

Y. Ji, W. Xu, N. Ding, et al., “Huge Upconversion Luminescence Enhancement by a Cascade Optical Field Modulation Strategy Facilitating Selective Multispectral Narrow-Band Near-Infrared Photodetection,” Light Science & Applications 9 (2020): 184.

[105]

C. Clarke, D. Liu, F. Wang, et al., “Large-scale Dewetting Assembly of Gold Nanoparticles for Plasmonic Enhanced Upconversion Nanoparticles,” Nanoscale 10 (2018): 6270-6276.

[106]

A. Iqbal and K. H. Bevan, “Simultaneously Solving the Photovoltage and Photocurrent at Semiconductor-Liquid Interfaces,” Journal of Physical Chemistry C 122 (2018): 30-43.

[107]

R. Lv, F. Yang, X. Jiang, et al., “Plasmonic Modulated Upconversion Fluorescence by Adjustable Distributed Gold Nanoparticles,” Journal of Luminescence 220 (2020): 116974.

[108]

F. Kang, J. He, T. Sun, Z. Y. Bao, F. Wang, and D. Y. Lei, “Plasmonic Dual-Enhancement and Precise Color Tuning of Gold Nanorod@SiO2 Coupled Core-Shell-Shell Upconversion Nanocrystals,” Advanced Functional Materials 27 (2017): 1701842.

[109]

A. L. Feng, M. L. You, L. Tian, et al., “Distance-Dependent Plasmon-Enhanced Fluorescence of Upconversion Nanoparticles using Polyelectrolyte Multilayers as Tunable Spacers,” Scientific Reports 5 (2015): 7779.

[110]

H. Qin, A. E. Shamso, A. Centeno, et al., “Enhancement of the Upconversion Photoluminescence of Hexagonal Phase NaYF4:Yb3+, Er3+ Nanoparticles by Mesoporous Gold Films,” Physical Chemistry Chemical Physics 19 (2017): 19159-19167.

[111]

Q. Wang, X. Sang, S. Li, et al., “Emission Editing in Eu/Tb Binary Complexes Based on Au@SiO2 Nanorods,” Optics Express 27 (2019): 27726-27736.

[112]

A. Alizadehkhaledi, A. L. Frencken, M. K. Dezfouli, S. Hughes, F. C. J. M. van Veggel, and R. Gordon, “Cascaded Plasmon-Enhanced Emission from a Single Upconverting Nanocrystal,” ACS Photon 6 (2019): 1125-1131.

[113]

Q. Zhan, X. Zhang, Y. Zhao, J. Liu, and S. He, “Tens of Thousands-Fold Upconversion Luminescence Enhancement Induced by a Single Gold Nanorod,” Laser & Photonics Reviews 9 (2015): 479-487.

[114]

Y. Kamura and K. Imura, “Photoluminescence from Carbon Dot-Gold Nanoparticle Composites Enhanced by Photonic and Plasmonic Double-Resonant Effects,” ACS Omega 5 (2020): 29068-29072.

[115]

Y. Kamura and K. Imura, “Enhanced and Polarized Photoluminescence from Carbon Dot-Metal Nanoparticle Composites,” Journal of Physical Chemistry C 124 (2020): 7370-7377.

[116]

D. D. Xu, B. Zheng, C. Y. Song, Y. Lin, D. W. Pang, and H. W. Tang, “Metal-Enhanced Fluorescence of Gold Nanoclusters as a Sensing Platform for Multi-Component Detection,” Sensors and Actuators B Chemical 282 (2019): 650-658.

[117]

H. Sabzalipoor, E. Karimi, M. Nikkhah, S. Abbasian, and A. Moshaii, “Metal Enhanced Fluorescence of Different Metallic Nanoclusters Deposited on Silver Dendritic Nanostructures,” Micro & Nano Letters 17 (2022): 114-123.

[118]

a) K. Sugawa, Encyclopedia of Analytical Chemistry (John Wiley & Sons, 2018). b) X. Ou, Y. Liu, M. Zhang, L. Hua, and S. Zhan, “Plasmonic Gold Nanostructures for Biosensing and Bioimaging,” Microchimica Acta 188 (2021): 304. c) Q. Q. Cheng, J. Yedoyan, H. Arman, and M. P. Doyle, “Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones,” Journal of the American Chemical Society 138 (2016): 44-47. d) I. Kim, H. Kim, S. Han, et al., “Metasurfaces-Driven Hyperspectral Imaging via Multiplexed Plasmonic Resonance Energy Transfer,” Advanced Materials 35 (2023): 2300229. e) V. Lamberti, M. Dolci, and P. Zijlstra, “Continuous Monitoring Biosensing Mediated by Single-Molecule Plasmon-Enhanced Fluorescence in Complex Matrices,” ACS Nano 18 (2024): 5805-5813. f) Y. Y. Huang, P. W. Chen, L. Y. Zhou, et al., “Plasmonic Coupling on an Optical Microfiber Surface: Enabling Single-Molecule and Noninvasive Dopamine Detection,” Advanced Materials 35 (2023): 2304116.

[119]

a) Y. Li, X. Liu, and Z. Lin, “Recent Developments and Applications of Surface Plasmon Resonance Biosensors for the Detection of Mycotoxins in Foodstuffs,” Food Chemistry 132 (2012): 1549-1554. b) O. Tokel, F. Inci, and U. Demirci, “Advances in Plasmonic Technologies for Point of Care Applications,” Chemical Reviews 114 (2014): 5728-5752. c) P. N. Abadian, C. P. Kelley, and E. D. Goluch, “Cellular Analysis and Detection Using Surface Plasmon Resonance Techniques,” Analytical Chemistry 86 (2014): 2799-2812. d) M. Li, S. K. Cushing, and N. Wu, “Plasmon-Enhanced Optical Sensors: A Review,” Analyst 140 (2015): 386-406. e) C. Zhou, H. Zou, C. Sun, D. Ren, J. Chen, and Y. Li, “Signal Amplification Strategies for DNA-Based Surface Plasmon Resonance Biosensors,” Biosensors & Bioelectronics 117 (2018): 678-689. f) J. R. Mejia-Salazar, “Plasmonic Biosensing,” Chemical Reviews 118 (2018): 10617-10625. g) J. Zhou, Q. Qi, C. Wang, et al., “Surface Plasmon Resonance (SPR) Biosensors for Food Allergen Detection in Food Matrices,” Biosensors & Bioelectronics 142 (2019): 111449. h) M. Mahmoudpour, J. E. N. Dolatabadi, M. Torbati, and A. Homayouni-Rad, “Nanomaterials Based Surface Plasmon Resonance Signal Enhancement for Detection of Environmental Pollutions,” Biosensors & Bioelectronics 127 (2019): 72-84. i) R. M. Pallares, N. T. K. Thanh, and X. Su, “Sensing of Circulating Cancer Biomarkers with Metal Nanoparticles,” Nanoscale 11 (2019): 22152-22171. j) D. Garoli, H. Yamazaki, N. Maccaferri, and M. Wanunu, “Plasmonic Nanopores for Single-Molecule Detection and Manipulation: Toward Sequencing Applications,” Nano Letters 19 (2019): 7553-7562. k) L. K. Chin, T. Son, J. S. Hong, et al., “Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research,” ACS Nano 14 (2020): 14528-14548. l) A. Jebelli, F. Oroojalian, F. Fathi, A. Mokhtarzadeh, and M. de la Guardia, “Recent Advances in Surface Plasmon Resonance Biosensors for MicroRNAs Detection,” Biosensors & Bioelectronics 169 (2020): 112599. m) M. P. Oyarzun, A. Tapia-Arellano, P. Cabrera, P. Jara-Guajardo, and M. J. Kogan, “Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer’s Disease,” Sensors 21 no. 6 (2021): 2067. n) K. X. Xie, Q. Liu, S. S. Jia, and X. X. Xiao, “Fluorescence Enhancement by Hollow Plasmonic Assembly and its Biosensing Application,” Anal Chimica Acta 1144 (2021): 96-101.

[120]

a) K. Zhang, F. Lu, Z. Cai, et al., “Plasmonic Modulation of the Upconversion Luminescence Based on Gold Nanorods for Designing a New Strategy of Sensing MicroRNAs,” Analytical Chemistry 92 (2020): 11795-11801. b) B. H. Kang, K. W. Jang, E. Yu, et al., “Plasmon-Enhanced Biosensors for MicroRNA Analysis and Cancer Diagnosis,” ACS Nano 203 no. 7 (2023): 6507-6518. c) X. H. Lu, C. Y. Yao, L. L. Sun, and Z. Li, “Plasmon-Enhanced Biosensors for MicroRNA Analysis and Cancer Diagnosis,” Biosensors & Bioelectronics 203 (2022): 114041. d) S. Choi and Y. S. Nam, “Plasmon-Modulated Fluorescence Nanoprobes for Enzyme-Free DNA Detection via Target Signal Enhancement and Off-Target Quenching,” Biosensors & Bioelectronics 210 (2022): 114288. e) X. A. Shen, H. X. Zhou, X. R. Chen, et al., “Janus Plasmonic-Aggregation Induced Emission Nanobeads as High-Performance Colorimetric–fluorescent Probe of Immunochromatographic Assay for the Ultrasensitive Detection of Staphylococcal Enterotoxin B in Milk,” Biosensors & Bioelectronics 261 (2024): 116458.

[121]

Y. Gao, J. Wang, W. Wang, et al., “More Symmetrical “Hot Spots” Ensure Stronger Plasmon-Enhanced Fluorescence: From Au Nanorods to Nanostars,” Analytical Chemistry 93 (2021): 2480-2489.

[122]

J. H. Hwang, S. Park, J. Son, J. W. Park, and J. M. Nam, “DNA-Engineerable Ultraflat-Faceted Core-Shell Nanocuboids with Strong, Quantitative Plasmon-Enhanced Fluorescence Signals for Sensitive, Reliable MicroRNA Detection,” Nano Letters 21 (2021): 2132-2140.

[123]

M. Peng, F. Sun, N. Na, and J. Ouyang, “Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection,” Small 16 no. 19 (2020): 2000460.

[124]

S. Xu, L. Jiang, Y. Nie, et al., “Gold Nanobipyramids as Dual-Functional Substrates for In Situ “Turn on” Analyzing Intracellular Telomerase Activity Based on Target-Triggered Plasmon-Enhanced Fluorescence,” ACS Applied Materials & Interfaces 10 (2018): 26851-26858.

[125]

J. Luan, A. Seth, R. Gupta, et al., “Ultrabright Fluorescent Nanoscale Labels for the Femtomolar Detection of Analytes with Standard Bioassays,” Nature Biomedical Engineering 4 (2020): 518-530.

[126]

a) V. T. Tran and H. Ju, “Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I,” Biomedicines 9 (2021): 448. b) J. H. Choi and J. W. Choi, “Metal-Enhanced Fluorescence by Bifunctional Au Nanoparticles for Highly Sensitive and Simple Detection of Proteolytic Enzyme,” Nano Letters 20 (2020): 7100-7107. c) N. U. Khan, Z. Muhammad, X. Liu, et al., “Ultrasensitive Detection of Exosome Using Biofunctionalized Gold Nanorods on a Silver-Island Film,” Nano Letters 21 (2021): 5532-5539. d) G. Y. Qiu, M. Spillmann, J. K. Tang, et al., “On-Site Quantification and Infection Risk Assessment of Airborne SARS-CoV-2 Virus via aNanoplasmonic Bioaerosol Sensing System in Healthcare Settings,” Advancement of Science 9 (2022): 2204774. e) D. Y. Lu, G. Z. Zhu, X. Li, et al., “Dynamic Monitoring of Oscillatory Enzyme Activity of Individual Live Bacteria via Nanoplasmonic Optical Antennas,” Nature Photonics 17 (2023): 904-911. f) R. Gupta, P. Gupta, S. Wang, et al., “Ultrasensitive Lateral-flow Assays via Plasmonically Active Antibody-Conjugated Fluorescent Nanoparticles,” Nature Biomedical Engineering 7 (2023): 1556-1570.

[127]

a) C. Yuan, Y. Deng, X. Li, C. Li, Z. Xiao, and Z. Liu, “Synthesis of Monodisperse Plasmonic Magnetic Microbeads and Their Application in Ultrasensitive Detection of Biomolecules,” Analytical Chemistry 90 (2018): 8178-8187. b) D. Kavungal, P. Magalhaes, S. T. Kumar, R. Kolla, H. A. Lashuel, and H. Altug, “Artificial Intelligence-Coupled Plasmonic Infrared Sensor for Detection of Structural Protein Biomarkers in Neurodegenerative Diseases,” Science Advances 9 (2023): eadg9644. c) Y. Liu, Y. Yang, G. H. Wang, et al., “Multiplexed Discrimination of SARS-CoV-2 Variants via Plasmonic-Enhanced Fluorescence in a Portable and Automated Device,” Nature Biomedical Engineering 7 (2023): 1636-1648. d) J. Wu, Y. Liu, L. J. Peng, et al., “A Plasmonic Fluor-Lightened Microneedle Array Enables Ultrasensitive Multitarget Whole Blood Diagnosis of Anemia in A Paper Origami-Based Device,” Small 19 (2023): 2300464.

[128]

M. Yu, Y. Yao, B. Cui, et al., “Metal-Enhanced Near Infrared Fluorescence-Based Sensor with Highly Improved Sensitivity for Adenosine Triphosphate,” ACS Applied Nano Materials 2 (2019): 48-57.

[129]

M. Zheng, Y. Kang, D. Liu, C. Li, B. Zheng, and H. Tang, “Detection of ATP from “Fluorescence” to “Enhanced Fluorescence” Based on Metal-Enhanced Fluorescence Triggered by Aptamer Nanoswitch,” Sensors and Actuators B Chemical 319 (2020): 128263.

[130]

L. Wang, Q. Song, Q. Liu, D. He, and J. Ouyang, “Plasmon-Enhanced Fluorescence-Based Core-Shell Gold Nanorods as a Near-IR Fluorescent Turn-on Sensor for the Highly Sensitive Detection of Pyrophosphate in Aqueous Solution,” Advanced Functional Materials 25 (2015): 7017-7027.

[131]

Y. Cui, C. Niu, N. Na, and J. Ouyang, “Core-Shell Gold Nanocubes for Point Mutation Detection Based on Plasmon-Enhanced Fluorescence,” Journal of Materials Chemistry B 5 (2017): 5329-5335.

[132]

H. Yuan, Y. Lu, Z. Wang, et al., “Single Nanoporous Gold Nanowire as a Tunable One-Dimensional Platform for Plasmon-Enhanced Fluorescence,” Chemical Communications 52 (2016): 1808-1811.

[133]

H. Yuan, J. Liu, Y. Lu, et al., “Nano Endoscopy with Plasmon-Enhanced Fluorescence for Sensitive Sensing Inside Ultrasmall Volume Samples,” Analytical Chemistry 89 (2017): 1045-1048.

[134]

D. S. Reis, V. L. de Oliveira, M. L. Silva, R. M. Paniago, L. O. Ladeira, and L. M. Andrade, “Gold Nanoparticles Enhance Fluorescence Signals by Flow Cytometry at Low Antibody Concentrations,” Journal of Materials Chemistry B 9 (2021): 1414-1423.

[135]

S. K. Chakkarapani, S. Lee, B. Park, H. Y. Seo, and S. H. Kang, “Plasmon-Amplified Endogenous Fluorescence Nanospectroscopic Sensor Based on Inherent Elastic Scattering for Ultratrace Ratiometric Detection of Capsaicinoids,” ACS Sensors 4 (2019): 953-960.

[136]

A. Minopoli, B. D. Ventura, B. Lenyk, et al., “Ultrasensitive Antibody-Aptamer Plasmonic Biosensor for Malaria Biomarker Detection in Whole Blood,” Nature Communications 11 (2020): 6134.

[137]

Y. Zhao, L. Shi, H. Miao, and X. Jing, ““Add on” Dual-Modal Optical Immunoassay by Plasmonic Metal NP-Semiconductor Composites,” Analytical Chemistry 93 (2021): 3250-3257.

[138]

J. Hu, R. Wang, R. Fan, et al., “Nanocomposites of Au Nanorods and Core-Shell NaGdF4:Yb3+,Er3+@NaYF4 Upconversion Nanoparticles for Temperature Sensing,” ACS Applied Nano Materials 3 (2020): 9679-9685.

[139]

Y. Wu, M. R. K. Ali, K. Chen, N. Fang, and M. A. El-Sayed, “Gold Nanoparticles in Biological Optical Imaging,” Nano Today 24 (2019): 120-140.

[140]

a) S. Khatua, P. M. R. Paulo, H. Yuan, A. Gupta, P. Zijlstra, and M. Orrit, “Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods,” ACS Nano 8 (2014): 4440-4449. b) J. S. Lin, X. D. Tian, G. Li, F. L. Zhang, Y. Wang, and J. F. Li, “Advanced Plasmonic Technologies for Multi-Scale Biomedical Imaging,” Chemical Society Reviews 51 (2022): 9445-9468.

[141]

J. Sun, F. Pi, J. Ji, et al., “Ultrasensitive “FRET-SEF” Probe for Sensing and Imaging MicroRNAs in Living Cells Based on Gold Nanoconjugates,” Analytical Chemistry 90 (2018): 3099-3108.

[142]

Y. Luo, Y. Song, C. Zhu, et al., “Visualization of Endogenous Hydrogen Sulfide in Living Cells Based on Au Nanorods@Silica Enhanced Fluorescence,” Analytica Chimica Acta 1053 (2019): 81-88.

[143]

I. G. Theodorou, P. Ruenraroengsak, D. A. Gonzalez-Carter, et al., “Towards Multiplexed Near-Infrared Cellular Imaging Using Gold Nanostar Arrays with Tunable Fluorescence Enhancement,” Nanoscale 11 (2019): 2079-2088.

[144]

B. Koh, X. Li, B. Zhang, et al., “Visible to Near-Infrared Fluorescence Enhanced Cellular Imaging on Plasmonic Gold Chips,” Small 12 (2016): 457-465.

[145]

J. Wang, X. Zhuo, X. Xiao, et al., “AlPcS-loaded Gold Nanobipyramids with High Two-Photon Efficiency for Photodynamic Therapy In Vivo,” Nanoscale 11 (2019): 3386-3395.

[146]

Y. Liu, Y. Zhang, X. Li, et al., “Fluorescence-Enhanced Covalent Organic Framework Nanosystem for Tumor Imaging and Photothermal Therapy,” Nanoscale 11 (2019): 10429-10438.

[147]

Y. Zhang, G. Zhang, P. Yang, B. Moosa, and N. M. Khashab, “Self-Immolative Fluorescent and Raman Probe for Real-Time Imaging and Quantification of γ-Glutamyl Transpeptidase in Living Cells,” ACS Applied Materials & Interfaces 11 (2019): 27529-27535.

[148]

X. Wu, Y. Peng, X. Duan, L. Yang, J. Lan, and F. Wang, “Homologous Gold Nanoparticles and Nanoclusters Composites with Enhanced Surface Raman Scattering and Metal Fluorescence for Cancer Imaging,” Nanomaterials 8 no. 10 (2018): 819.

[149]

X. F. Lai, Y. X. Zou, S. S. Wang, et al., “Modulating the Morphology of Gold Graphitic Nanocapsules for Plasmon Resonance-Enhanced Multimodal Imaging,” Analytical Chemistry 88 (2016): 5385-5391.

[150]

J. M. Liu, Y. Y. Liu, D. D. Zhang, G. Z. Fang, and S. Wang, “Synthesis of GdAlO3:Mn4+, Ge4+@Au Core-Shell Nanoprobes with Plasmon-Enhanced Near-Infrared Persistent Luminescence for In Vivo Trimodality Bioimaging,” ACS Applied Materials & Interfaces 8 (2016): 29939-29949.

[151]

S. Wang, Y. Zhao, and Y. Xu, “Recent Advances in Applications of Multimodal Ultrasound-guided Photoacoustic Imaging Technology,” Visual Computing for Industry Biomedicine and Art 3 (2020): 24.

[152]

a) Y. Hang, J. Boryczka, and N. Wu, “Visible-light and Near-Infrared Fluorescence and Surface-Enhanced Raman Scattering Point-of-Care Sensing and Bio-Imaging: A Review,” Chemical Society Reviews 51 (2022): 329-375. b) S. Hua, S. Zhong, H. Arami, et al., “Simultaneous Deep Tracking of Stem Cells by Surface Enhanced Raman Imaging Combined with Single-Cell Tracking by NIR-II Imaging in Myocardial Infarction,” Advanced Functional Materials 31 no. 24 (2021): 2100468. c) X. Y. Bi, Z. N. Fang, B. G. Deng, L. Zhou, and J. Ye, “Ultrahigh Raman-Fluorescence Dual-Enhancement in Nanogaps of Silver-Coated Gold Nanopetals,” Advanced Optical Materials 11 (2023): 2300188.

[153]

E. A. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An Ultra-Sensitive Dual-Mode Imaging System Using Metal-Enhanced Fluorescence in Solid Phantoms,” Nano Research 8 (2015): 3912-3921.

[154]

W. Liu, B. Naydenov, S. Chakrabortty, et al., “Fluorescent Nanodiamond-Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging,” Nano Letters 16 (2016): 6236-6244.

[155]

B. M. Crawford, P. Strobbia, H. N. Wang, et al., “Plasmonic Nanoprobes for In Vivo Multimodal Sensing and Bioimaging of MicroRNA Within Plants,” ACS Applied Materials & Interfaces 11 (2019): 7743-7754.

[156]

L. Henderson, O. Neumann, C. Kaffes, et al., “Routes to Potentially Safer T1 Magnetic Resonance Imaging Contrast in a Compact Plasmonic Nanoparticle with Enhanced Fluorescence,” ACS Nano 12 (2018): 8214-8223.

[157]

W. Chen, S. Zhang, Y. Yu, H. Zhang, and Q. He, “Structural-Engineering Rationales of Gold Nanoparticles for Cancer Theranostics,” Advanced Materials 28 (2016): 8567-8585.

[158]

C. Joyce, S. M. Fothergill, and F. Xie, “Recent Advances in Gold-Based Metal Enhanced Fluorescence Platforms for Diagnosis and Imaging in the Near-Infrared,” Materials Today Advances 7 (2020): 100073.

[159]

a) U. Rocha, J. Hu, E. M. Rodriguez, et al., “Subtissue Imaging and Thermal Monitoring of Gold Nanorods Through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles,” Small 12 (2016): 5394-5400. b) X. M. Cui, Q. F. Ruan, X. L. Zhuo, et al., “Photothermal Nanomaterials: A Powerful Light-to-Heat Converter,” Chemical Reviews 123 no. 11 (2023): 6891-6952.

[160]

J. K. Young, E. R. Figueroa, and R. A. Drezek, “Tunable Nanostructures as Photothermal Theranostic Agents,” Annals of Biomedical Engineering 40 (2012): 438-459.

[161]

R. K. Kannadorai, G. G. Y. Chiew, K. Q. Luo, and Q. Liu, “Dual Functions of Gold Nanorods as Photothermal Agent and Autofluorescence Enhancer to Track Cell Death During Plasmonic Photothermal Therapy,” Cancer Letters 357 (2015): 152-159.

[162]

X. Wu, L. Mu, M. Chen, et al., “Bifunctional Gold Nanobipyramids for Photothermal Therapy and Temperature Monitoring,” ACS Applied Bio Materials 2 (2019): 2668-2675.

[163]

a) J. Y. Bian, Y. J. Xu, M. H. Sun, et al., “Engineering AIEgens-Tethered Gold Nanoparticles with Enzymatic Dual Self-Assembly for Amplified Cancer-Specific Phototheranostics,” ACS Nano 18 (2024): 26784-26798. b) M. Tavakkoli Yaraki, M. Wu, E. Middha, et al., “Gold Nanostars-AIE Theranostic Nanodots with Enhanced Fluorescence and Photosensitization Towards Effective Image-Guided Photodynamic Therapy,” Nano-Micro Letters 13 (2021): 58.

[164]

F. Hong, C. Tang, Q. Xue, et al., “Simultaneously Enhanced Singlet Oxygen and Fluorescence Production of Nanoplatform by Surface Plasmon Resonance Coupling for Biomedical Applications,” Langmuir 35 (2019): 14833-14839.

[165]

T. Zhao, K. Yu, L. Li, et al., “Gold Nanorod Enhanced Two-Photon Excitation Fluorescence of Photosensitizers for Two-Photon Imaging and Photodynamic Therapy,” ACS Applied Materials & Interfaces 6 (2014): 2700-2708.

[166]

S. Li, X. Shen, Q. H. Xu, and Y. Cao, “Gold Nanorod Enhanced Conjugated Polymer/Photosensitizer Composite Nanoparticles for Simultaneous Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy,” Nanoscale 11 (2019): 19551-19560.

[167]

a) X. Li, J. F. Lovell, J. Yoon, and X. Chen, “Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer,” Nature Reviews Clinical Oncology 17 (2020): 657-674. b) H. J. Tan, J. M. Ou, Y. B. Hou, et al., “Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Probes for Target Imaging of Tumors, Organoids and Cancerous Cells,” Sensors and Actuators B Chemical 414 (2024): 135974.

[168]

M. Lu, N. Kang, C. Chen, et al., “Plasmonic Enhancement of Cyanine Dyes for Near-Infrared Light-Triggered Photodynamic/Photothermal Therapy and Fluorescent Imaging,” Nanotechnology 28 no. 44 (2017): 445710.

[169]

a) W. T. Huang, M. H. Chan, X. Chen, M. Hsiao, and R. S. Liu, “Theranostic Nanobubble Encapsulating a Plasmon-Enhanced Upconversion Hybrid Nanosystem for Cancer Therapy,” Theranostics 10 (2020): 782-796. b) J. Liu, F. Yang, M. Feng, Y. Wang, X. Peng, and R. Lv, “Surface Plasmonic Enhanced Imaging-Guided Photothermal/Photodynamic Therapy Based on Lanthanide–Metal Nanocomposites Under Single 808 Nm Laser,” ACS Biomaterials Science & Engineering 5 (2019): 5051-5059.

[170]

J. Sun, J. Wang, W. Hu, et al., “Camouflaged Gold Nanodendrites Enable Synergistic Photodynamic Therapy and NIR Biowindow II Photothermal Therapy and Multimodal Imaging,” ACS Applied Materials & Interfaces 13 (2021): 10778-10795.

[171]

S. Tian, J. He, D. Lyu, S. Li, and Q. H. Xu, “Aggregation Enhanced Photoactivity of Photosensitizer Conjugated Metal Nanoparticles for Multimodal Imaging and Synergistic Phototherapy Below Skin Tolerance Threshold,” Nano Today 45 (2022): 101534.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/