H2S-Activated Near-Infrared Emission Chemiluminescent Probes for Precise Diagnosis of Inflammations and Tumors

Mengke Liang , Ling'e Zhang , Bo Yu , Zirui Geng , Huazhen Ge , Ying Sun , Luyu Liu , Xiqun Jiang , Wei Wu

Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e742

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e742 DOI: 10.1002/agt2.742
RESEARCH ARTICLE

H2S-Activated Near-Infrared Emission Chemiluminescent Probes for Precise Diagnosis of Inflammations and Tumors

Author information +
History +
PDF

Abstract

Compared to fluorescence imaging, chemiluminescence imaging does not need external excitation light, and hence presents high imaging depth and signal-to-noise ratio without autofluorescence and phototoxicity, making it a promising tool for biological detection and analysis. However, the target-specific activatable near-infrared emission chemiluminescent probes still need to be developed for the precise diagnosis of diseases. In this paper, we synthesized four direct near-infrared emission Schaap's chemiluminophores (AINCL, AIFCL, ABTCL, and APYCL) by incorporating different electronic acceptors, respectively, and studied the effect of the acceptors on the optical properties of the chemiluminophores. To achieve the specific detection of hydrogen sulfide (H2S)-related diseases, we used H2S-cleavable 2,4-dinitrophenylsulfonate to cage the phenol groups in the chemiluminophores. It was demonstrated that the endogenous H2S in inflammations and tumors could activate effectively the chemiluminescence with high specificity, which provided the precise location of nidus in chemiluminescence imaging and allowed us to perform surgical resection.

Keywords

Schaap’s chemiluminophores / direct near-infrared emission / chemiluminescence imaging / inflammations / tumors

Cite this article

Download citation ▾
Mengke Liang, Ling'e Zhang, Bo Yu, Zirui Geng, Huazhen Ge, Ying Sun, Luyu Liu, Xiqun Jiang, Wei Wu. H2S-Activated Near-Infrared Emission Chemiluminescent Probes for Precise Diagnosis of Inflammations and Tumors. Aggregate, 2025, 6(4): e742 DOI:10.1002/agt2.742

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Liu, Y. Zhu, P. Wu, and H. Xiong, “Highly Sensitive D-A-D-Type Near-Infrared Fluorescent Probe for Nitric Oxide Real-Time Imaging in Inflammatory Bowel Disease,” Analytical Chemistry 93 (2021): 4975-4983.

[2]

R. Zhang, Z. Bi, L. Zhang, et al., “Blood Circulation Assessment by Steadily Fluorescent Near-Infrared-II Aggregation-Induced Emission Nano Contrast Agents,” ACS Nano 17 (2023): 19265-19274.

[3]

J. Huang, L. Su, C. Xu, et al., “Molecular Radio Afterglow Probes for Cancer Radiodynamic Theranostics,” Nature Materials 22 (2023): 1421-1429.

[4]

Y. Wang, Z. Yi, J. Guo, et al., “In Vivo Ultrasound-Induced Luminescence Molecular Imaging,” Nature Photonics 18 (2024): 334-343.

[5]

J. Huang, P. Cheng, C. Xu, et al., “Chemiluminescent Probes With Long-Lasting High Brightness for In Vivo Imaging of Neutrophils,” Angewandte Chemie International Edition 61 (2022): e202203235.

[6]

S. Xu, W. Pan, L. Chen, et al., “Hydrogen-Bond-Driven Self-Assembly of Chemiluminophore Affording Long-Lasting In Vivo Imaging,” Biomaterials 293 (2023): 121955.

[7]

J. Liu, J. Huang, X. Wei, P. Cheng, and K. Pu, “Near-Infrared Chemiluminescence Imaging of Chemotherapy-Induced Peripheral Neuropathy,” Advanced Materials 36 (2023): 2310605.

[8]

S. Li, G. Zhang, Y. He, et al., “Emission Wavelength-Tunable Bicyclic Dioxetane Chemiluminescent Probes for Precise In Vitro and In Vivo Imaging,” Analytical Chemistry 95 (2023): 13191-13200.

[9]

O. Green, T. Eilon, N. Hananya, S. Gutkin, C. R. Bauer, and D. Shabat, “Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes,” ACS Central Science 3 (2017): 349-358.

[10]

R. An, S. Wei, Z. Huang, F. Liu, and D. Ye, “An Activatable Chemiluminescent Probe for Sensitive Detection of γ-Glutamyl Transpeptidase Activity In Vivo,” Analytical Chemistry 91 (2019): 13639-13646.

[11]

S. M. da Silva, A. P. Lang, A. P. F. dos Santos, et al., “Cyclic Peroxidic Carbon Dioxide Dimer Fuels Peroxyoxalate Chemiluminescence,” Journal of Organic Chemistry 86 (2021): 11434-11441.

[12]

L. Li, X. Zhang, Y. Ren, et al., “Chemiluminescent Conjugated Polymer Nanoparticles for Deep-Tissue Inflammation Imaging and Photodynamic Therapy of Cancer,” Journal of the American Chemical Society 146 (2024): 5927-5939.

[13]

M. David, Q. Jaber, M. Fridman, and D. Shabat, “Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers,” Chemistry - A European Journal 29 (2023): e202300422.

[14]

S. Ye, N. Hananya, O. Green, et al., “A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals,” Angewandte Chemie International Edition 59 (2020): 14326-14330.

[15]

Y. Zhang, C. Yan, C. Wang, Z. Guo, X. Liu, and W. Zhu, “A Sequential Dual-Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging,” Angewandte Chemie International Edition 59 (2020): 9059-9066.

[16]

J. Huang, Y. Jiang, J. Li, J. Huang, and K. Pu, “Molecular Chemiluminescent Probes With a Very Long Near-Infrared Emission Wavelength for In Vivo Imaging,” Angewandte Chemie International Edition 60 (2021): 3999-4003.

[17]

K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, and C. J. Chang, “Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released From Folate Degradation in Living Mice,” Angewandte Chemie International Edition 57 (2018): 7508-7512.

[18]

J. Cao, R. Lopez, J. M. Thacker, et al., “Chemiluminescent Probes for Imaging H2S in Living Animals,” Chemical Science 6 (2015): 1979-1985.

[19]

J. Cao, J. Campbell, L. Liu, R. P. Mason, and A. R. Lippert, “In Vivo Chemiluminescent Imaging Agents for Nitroreductase and Tissue Oxygenation,” Analytical Chemistry 88 (2016): 4995-5002.

[20]

Z. Chen, L. Su, Y. Wu, et al., “Design and Synthesis of a Small Molecular NIR-II Chemiluminescence Probe for In Vivo-Activated H2S Imaging,” Proceedings of the National Academy of Sciences of the United States of America 120 (2023): e2205186120.

[21]

N. Hananya, A. E. Boock, C. R. Bauer, R. Satchi-Fainaro, and D. Shabat, “Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-On Chemiluminescence Probes With Color Modulation for Sensing and Imaging,” Journal of the American Chemical Society 138 (2016): 13438-13446.

[22]

S. Gnaim, S. P. Gholap, L. Ge, et al., “Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores Through Convergent Synthesis,” Angewandte Chemie International Edition 61 (2022): e202202187.

[23]

J. Huang, C. Zhang, X. Wang, X. Wei, and K. Pu, “Near-Infrared Photodynamic Chemiluminescent Probes for Cancer Therapy and Metastasis Detection,” Angewandte Chemie International Edition 62 (2023): e202303982.

[24]

J. Huang, M. Xu, P. Cheng, J. Yu, J. Wu, and K. Pu, “A Tandem-Locked Chemiluminescent Probe for Imaging of Tumor-Associated Macrophage Polarization,” Angewandte Chemie International Edition 63 (2024): e202319780.

[25]

R. Blau, O. Shelef, D. Shabat, and R. Satchi-Fainaro, “Chemiluminescent Probes in Cancer Biology,” Nature Reviews Bioengineering 1 (2023): 648-664.

[26]

W. Zeng, L. Wu, Y. Ishigaki, et al., “An Activatable Afterglow/MRI Bimodal Nanoprobe With Fast Response to H2S for In Vivo Imaging of Acute Hepatitis,” Angewandte Chemie International Edition 61 (2022): e202111759.

[27]

K. G. Fosnacht and M. D. Pluth, “Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species,” Chemical Reviews 124 (2024): 4124-4257.

[28]

Z. Huang, W. Zhang, M. Liang, et al., “A Multifunctional Fluorescent Probe for Sequential Detection of Hydrogen Sulfide and pH in Foodstuffs, Living Cells and Mice,” Analytica Chimica Acta 1299 (2024): 342434.

[29]

S. Lee, D. B. Sung, J. S. Lee, and M. S. Han, “A Fluorescent Probe for Selective Facile Detection of H2S in Serum Based on an Albumin-Binding Fluorophore and Effective Masking Reagent,” ACS Omega 5 (2020): 32507-32514.

[30]

Y. Chen, R. Zhao, C. Tang, et al., “Design and Development of a Bioorthogonal, Visualizable and Mitochondria-Targeted Hydrogen Sulfide (H2S) Delivery System,” Angewandte Chemie International Edition 61 (2022): e202112734.

[31]

J. Hou, Y. Huang, L. Fu, et al., “Evaluating the Effect of Hydrogen Sulfide in the Idiopathic Pulmonary Fibrosis Model With a Fluorescent Probe,” Analytical Chemistry 95 (2023): 5514-5521.

[32]

L. An, X. Wang, X. Rui, et al., “The In Situ Sulfidation of Cu2O by Endogenous H2S for Colon Cancer Theranostics,” Angewandte Chemie International Edition 57 (2018): 15782-15786.

[33]

P. Rose, P. K. Moore, S. H. Ming, O. C. Nam, J. S. Armstrong, and M. Whiteman, “Hydrogen Sulfide Protects Colon Cancer Cells From Chemopreventative Agent β-Phenylethyl Isothiocyanate Induced Apoptosis,” World Journal of Gastroenterology 11 (2005): 3990-3997.

[34]

R. H. Wang, P. R. Chen, Y. T. Chen, et al., “Hydrogen Sulfide Coordinates Glucose Metabolism Switch Through Destabilizing Tetrameric Pyruvate Kinase M2,” Nature Communications 15 (2024): 7463.

[35]

A. Dawoud, R. A. Youness, H. Nafea, et al., “Pan-Inhibition of the Three H2S Synthesizing Enzymes Restrains Tumor Progression and Immunosuppression in Breast Cancer,” Cancer Cell International 24 (2024): 136.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/