Supramolecular Complexes of Ultrashort Cationic Lipopeptides with Cyclodextrins: Improved Selectivity and Therapeutic Potential

Chiara Bellini , Unai Atxabal , Szilvia Bősze , Orsolya Dobay , Andrea Horváth , Imola Cs. Szigyártó , Tamás Beke-Somfai , Jesús Jiménez-Barbero , István Puskás , Kata Horváti

Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e741

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e741 DOI: 10.1002/agt2.741
RESEARCH ARTICLE

Supramolecular Complexes of Ultrashort Cationic Lipopeptides with Cyclodextrins: Improved Selectivity and Therapeutic Potential

Author information +
History +
PDF

Abstract

In the last decade, the rise of antibiotic resistance has heightened interest in antimicrobial peptides and lipopeptides as promising alternatives to conventional antibiotics because of their lower propensity to develop resistance. However, lipopeptides often show undesired cytotoxicity due to their non-selective membrane disruptive effect, and their limited aqueous solubility represents a matter of concern from a pharmaceutical point of view. This study demonstrates a panel of ultrashort cationic lipopeptides (USCLs) consisting of a tetrapeptide (L1), originated from buforin II, coupled with saturated fatty acids of different lengths. Our results highlight that the 16-carbon fatty acid lipopeptide (Pal-L1) exhibits relevant antibacterial activity against multiresistant Staphylococcus aureus strain. However, the formation of heterogenic aggregates in cell culture medium and toxic effects on human cells were also observed. Pal-L1 formulation with the randomly methylated α-cyclodextrin (RAMEA) and the sulfobutylether-β-cyclodextrin (SBECD) has resulted in a production of ultralow-sized molecular dispersion systems and reduced lipopeptide toxicity without compromising its antimicrobial activity. With titration 1H-NMR, 2D NMR experiments, together with molecular dynamics simulations, we described the size, structure, stoichiometry, and dissociation constant of the supramolecular complexes. Interactions of neutral and negatively charged model liposomes with Pal-L1 lipopeptide in the presence or absence of cyclodextrins serve an explanation for the membrane selectivity, and based on the results, we proposed a potential mechanism of action for the Pal-L1+cyclodextrin complexes on different biological membranes. Overall, our model characterization points out that cyclodextrin formulation improves the therapeutical applicability of lipopeptides.

Keywords

buforin / cyclodextrin / lipopeptide / MRSA / RAMEA / SBECD

Cite this article

Download citation ▾
Chiara Bellini, Unai Atxabal, Szilvia Bősze, Orsolya Dobay, Andrea Horváth, Imola Cs. Szigyártó, Tamás Beke-Somfai, Jesús Jiménez-Barbero, István Puskás, Kata Horváti. Supramolecular Complexes of Ultrashort Cationic Lipopeptides with Cyclodextrins: Improved Selectivity and Therapeutic Potential. Aggregate, 2025, 6(4): e741 DOI:10.1002/agt2.741

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EClinicalMedicine. Antimicrobial Resistance: A Top Ten Global Public Health Threat. eClinicalMedicine 41 (2021): 101221, https://doi.org/10.1016/j.eclinm.2021.101221.

[2]

V. Costanzo and G. N. Roviello, “The Potential Role of Vaccines in Preventing Antimicrobial Resistance (AMR): An Update and Future Perspectives,” Vaccines 11, no. 2 (2023): 333, https://doi.org/10.3390/vaccines11020333.

[3]

D. G. J. Larsson and C. F. Flach, “Antibiotic Resistance in the Environment,” Nature Reviews Microbiology 20, no. 5 (2022): 257-269, https://doi.org/10.1038/s41579-021-00649-x.

[4]

E. B. Chahine, J. A. Dougherty, K. A. Thornby, and E. H. Guirguis, “Antibiotic Approvals in the Last Decade: Are We Keeping up with Resistance?,” Annals of Pharmacotherapy 56, no. 4 (2022): 441-462, https://doi.org/10.1177/10600280211031390.

[5]

2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline,” Geneva: World Health Organization, 2019.

[6]

S. Walesch, J. Birkelbach, G. Jézéquel, et al., “Fighting Antibiotic Resistance-Strategies and (Pre)Clinical Developments to Find New Antibacterials,” Embo Reports 24, no. 1 (2023): e56033, https://doi.org/10.15252/embr.202256033.

[7]

U. Theuretzbacher, K. Outterson, A. Engel, and A. Karlén, “The Global Preclinical Antibacterial Pipeline,” Nature Reviews Microbiology 18, no. 5 (2020): 275-285, https://doi.org/10.1038/s41579-019-0288-0.

[8]

G. Wang, X. Li, and Z. Wang, “APD3: The Antimicrobial Peptide Database as a Tool for Research and Education,” Nucleic Acids Research 44, no. D1 (2016): D1087-D1093, https://doi.org/10.1093/nar/gkv1278.

[9]

Y. Huan, Q. Kong, H. Mou, and H. Yi, “Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields,” Frontiers in Microbiology 11 (2020): 582779, https://doi.org/10.3389/fmicb.2020.582779.

[10]

P. M. Hwang and H. J. Vogel, “Structure-Function Relationships of Antimicrobial Peptides,” Biochemistry and Cell Biology 76, no. 2-3 (1998): 235-246, https://doi.org/10.1139/o98-026.

[11]

F. Guilhelmelli, N. Vilela, P. Albuquerque, L. D. S. Derengowski, I. Silva-Pereira, and C. M. Kyaw, “Antibiotic Development Challenges: The Various Mechanisms of Action of Antimicrobial Peptides and of Bacterial Resistance,” Frontiers in Microbiology 4 (2013): 353, https://doi.org/10.3389/fmicb.2013.00353.

[12]

J. Wang, X. Dou, X. S. Song, et al., “Antimicrobial Peptides: Promising Alternatives in the Post Feeding Antibiotic Era,” Medicinal Research Reviews 39, no. 3 (2019): 831-859, https://doi.org/10.1002/med.21542.

[13]

P. G. Lima, J. T. A. Oliveira, J. L. Amaral, C. D. T. Freitas, and P. F. N. Souza, “Synthetic Antimicrobial Peptides: Characteristics, Design, and Potential as Alternative Molecules to Overcome Microbial Resistance,” Life Sciences 278 (2021): 119647, https://doi.org/10.1016/j.lfs.2021.119647.

[14]

T. Vanzolini, M. Bruschi, A. C. Rinaldi, A. M. Magnani, and M. A. Fraternale, “Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms,” International Journal of Molecular Sciences 23, no. 1 (2022): 545, https://doi.org/10.3390/ijms23010545.

[15]

K. Matsuzaki, “Control of Cell Selectivity of Antimicrobial Peptides,” Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, no. 8 (2009): 1687-1692, https://doi.org/10.1016/j.bbamem.2008.09.013.

[16]

B. H. Gan, J. Gaynord, S. M. Rowe, T. Deingruber, and D. R. Spring, “The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions,” Chemical Society Reviews 50, no. 13 (2021): 7820-7880, https://doi.org/10.1039/D0CS00729C.

[17]

D. S. J. Ting, R. W. Beuerman, H. S. Dua, R. Lakshminarayanan, and I. Mohammed, “Strategies in Translating the Therapeutic Potentials of Host Defense Peptides,” Frontiers in Immunology 11 (2020): 983, https://doi.org/10.3389/fimmu.2020.00983.

[18]

N. G. Bednarska, B. W. Wren, and S. J. Willcocks, “The Importance of the Glycosylation of Antimicrobial Peptides: Natural and Synthetic Approaches,” Drug Discovery Today 22, no. 6 (2017): 919-926, https://doi.org/10.1016/j.drudis.2017.02.001.

[19]

T. Rounds and S. K. Straus, “Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics,” International Journal of Molecular Sciences 21, no. 24 (2020): 9692, https://doi.org/10.3390/ijms21249692.

[20]

A. Malina and Y. Shai, “Conjugation of Fatty Acids with Different Lengths Modulates the Antibacterial and Antifungal Activity of a Cationic Biologically Inactive Peptide,” Biochemical Journal 390, no. 3 (2005): 695-702, https://doi.org/10.1042/BJ20050520.

[21]

G. Laverty, M. McLaughlin, C. Shaw, S. P. Gorman, and B. F. Gilmore, “Antimicrobial Activity of Short, Synthetic Cationic Lipopeptides: Short Antimicrobial Lipopeptides,” Chemical Biology and Drug Design 75, no. 6 (2010): 563-569, https://doi.org/10.1111/j.1747-0285.2010.00973.x.

[22]

A. Makovitzki, D. Avrahami, and Y. Shai, “Ultrashort Antibacterial and Antifungal Lipopeptides,” Proceedings of the National Academy of Sciences of the United States of America 103, no. 43 (2006): 15997-16002, https://doi.org/10.1073/pnas.0606129103.

[23]

G. N. Serrano, G. G. Zhanel, and F. Schweizer, “Antibacterial Activity of Ultrashort Cationic Lipo-β-Peptides,” Antimicrobial Agents and Chemotherapy 53, no. 5 (2009): 2215-2217, https://doi.org/10.1128/AAC.01100-08.

[24]

C. Zhong, F. Zhang, N. Zhu, et al., “Ultra-Short Lipopeptides Against Gram-Positive Bacteria While Alleviating Antimicrobial Resistance,” European Journal of Medicinal Chemistry 212 (2021): 113138, https://doi.org/10.1016/j.ejmech.2020.113138.

[25]

J. Peng, X. Liu, Q. Lu, et al., “Ultrashort Lipo-Tetrapeptide with Potent Antibacterial Activity and Local Therapeutic Effect Against Staphylococcus aureus,” International Journal of Antimicrobial Agents 62, no. 3 (2023): 106916, https://doi.org/10.1016/j.ijantimicag.2023.106916.

[26]

E. M. M. Del Valle, “Cyclodextrins and Their Uses: A Review,” Process Biochemistry 39, no. 9 (2004): 1033-1046, https://doi.org/10.1016/S0032-9592(03)00258-9.

[27]

C. Muankaew and T. Loftsson, “Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery,” Basic & Clinical Pharmacology & Toxicology 122, no. 1 (2018): 46-55, https://doi.org/10.1111/bcpt.12917.

[28]

K. Uekama, F. Hirayama, and H. Arima, “Recent Aspect of Cyclodextrin-Based Drug Delivery System,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 56, no. 1-2 (2006): 3-8, https://doi.org/10.1007/s10847-006-9052-y.

[29]

C. B. Park, M. S. Kim, and S. C. Kim, “A Novel Antimicrobial Peptide from Bufo bufo gargarizans,” Biochemical and Biophysical Research Communications 218, no. 1 (1996): 408-413, https://doi.org/10.1006/bbrc.1996.0071.

[30]

C. B. Park, K. S. Yi, K. Matsuzaki, M. S. Kim, and S. C. Kim, “Structure-Activity Analysis of Buforin II, a Histone H2A-Derived Antimicrobial Peptide: The Proline Hinge is Responsible for the Cell-Penetrating Ability of Buforin II,” Proceedings of the National Academy of Sciences of the United States of America 97, no. 15 (2000): 8245-8250, https://doi.org/10.1073/pnas.150518097.

[31]

L. Li, I. Vorobyov, and T. W. Allen, “The Different Interactions of Lysine and Arginine Side Chains with Lipid Membranes,” Journal of Physical Chemistry B 117, no. 40 (2013): 11906-11920, https://doi.org/10.1021/jp405418y.

[32]

W. Li, F. Separovic, N. M. O'Brien-Simpson, and J. D. Wade, “Chemically Modified and Conjugated Antimicrobial Peptides Against Superbugs,” Chemical Society Reviews 50, no. 8 (2021): 4932-4973, https://doi.org/10.1039/D0CS01026J.

[33]

D. Neubauer, M. Jaśkiewicz, M. Bauer, K. Gołacki, and W. Kamysz, “Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis,” Molecules 25, no. 2 (2020): 257, https://doi.org/10.3390/molecules25020257.

[34]

O. Stachurski, D. Neubauer, A. Walewska, et al., “Understanding the Role of Self-Assembly and Interaction with Biological Membranes of Short Cationic Lipopeptides in the Effective Design of New Antibiotics,” Antibiotics 11, no. 11 (2022): 1491, https://doi.org/10.3390/antibiotics11111491.

[35]

M. Dawgul, K. Greber, S. Bartoszewska, W. Baranska-Rybak, W. Sawicki, and W. Kamysz, “In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity,” Molecules 22, no. 12 (2017): 2173, https://doi.org/10.3390/molecules22122173.

[36]

W. Kamysz, C. Silvestri, O. Cirioni, et al., “In Vitro Activities of the Lipopeptides Palmitoyl (Pal)-Lys-Lys-NH 2 and Pal-Lys-Lys Alone and in Combination with Antimicrobial Agents Against Multiresistant Gram-Positive Cocci,” Antimicrobial Agents and Chemotherapy 51, no. 1 (2007): 354-358, https://doi.org/10.1128/AAC.00344-06.

[37]

C. P. Randall, K. R. Mariner, I. Chopra, and A. J. O'Neill, “The Target of Daptomycin is Absent from Escherichia coli and Other Gram-Negative Pathogens,” Antimicrobial Agents and Chemotherapy 57, no. 1 (2013): 637-639, https://doi.org/10.1128/AAC.02005-12.

[38]

D. S. Snyder and T. J. McIntosh, “The Lipopolysaccharide Barrier: Correlation of Antibiotic Susceptibility with Antibiotic Permeability and Fluorescent Probe Binding Kinetics,” Biochemistry 39, no. 38 (2000): 11777-11787, https://doi.org/10.1021/bi000810n.

[39]

N. Napo and Y. Shai, “A Molecular Mechanism for Lipopolysaccharide Protection of Gram-Negative Bacteria from Antimicrobial Peptides,” Journal of Biological Chemistry 280, no. 11 (2005): 10378-10387, https://doi.org/10.1074/jbc.M412865200.

[40]

H. W. L. Ziegler-Heitbroc, E. Thiel, A. Futterer, V. Herzog, A. Wirtz, and G. Riethmüller, “Establishment of a Human Cell Line (Mono Mac 6) with Characteristics of Mature Monocytes,” International Journal of Cancer 41 (1988): 456-461, https://doi.org/10.1002/ijc.2910410324.

[41]

H. Vorum, R. Brodersen, U. Kragh-Hansen, and A. O. Pedersen, “Solubility of Long-Chain Fatty Acids in Phosphate Buffer at pH 7.4,” Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1126, no. 2 (1992): 135-142, https://doi.org/10.1016/0005-2760(92)90283-2.

[42]

K. L. Zapadka, F. J. Becher, A. L. Gomes Dos Santos, and S. E. Jackson, “Factors Affecting the Physical Stability (Aggregation) of Peptide Therapeutics,” Interface Focus 7, no. 6 (2017): 20170030, https://doi.org/10.1098/rsfs.2017.0030.

[43]

P. J. M. Van Den Oetelaar, I. M. Mentink, and G. J. Brinks, “Loss of Peptides and Proteins Upon Sterile Filtration due to Adsorption to Membrane Filters,” Drug Development and Industrial Pharmacy 15, no. 1 (1989): 97-106, https://doi.org/10.3109/03639048909040198.

[44]

S. L. Regen, “Membrane-Disrupting Molecules as Therapeutic Agents: A Cautionary Note,” JACS Au 1, no. 1 (2021): 3-7, https://doi.org/10.1021/jacsau.0c00037.

[45]

L. Szente, J. Szejtli, J. Szemán, and L. Kató, “Fatty Acid-Cyclodextrin Complexes: Properties and Applications,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 16, no. 4 (1993): 339-354, https://doi.org/10.1007/BF00708714.

[46]

L. Szente and É. Fenyvesi, “Cyclodextrin-Lipid Complexes: Cavity Size Matters,” Structural Chemistry 28, no. 2 (2017): 479-492, https://doi.org/10.1007/s11224-016-0884-9.

[47]

T. T. Do, R. Van Hooghten, and G. Van den Mooter, “A Study of the Aggregation of Cyclodextrins: Determination of the Critical Aggregation Concentration, Size of Aggregates and Thermodynamics Using Isodesmic and K2-K Models,” International Journal of Pharmaceutics 521, no. 1-2 (2017): 318-326, https://doi.org/10.1016/j.ijpharm.2017.02.037.

[48]

L. Szente, A. Singhal, A. Domokos, and B. Song, “Cyclodextrins: Assessing the Impact of Cavity Size, Occupancy, and Substitutions on Cytotoxicity and Cholesterol Homeostasis,” Molecules 23, no. 5 (2018): 1228, https://doi.org/10.3390/molecules23051228.

[49]

S. K. Rodal, G. Skretting, Ø. Garred, F. Vilhardt, B. Van Deurs, and K. Sandvig, “Extraction of Cholesterol with Methyl-β-Cyclodextrin Perturbs Formation of Clathrin-Coated Endocytic Vesicles,” Molecular Biology of the Cell 10, no. 4 (1999): 961-974, https://doi.org/10.1091/mbc.10.4.961.

[50]

C. P. Randall, K. R. Mariner, I. Chopra, and A. J. O'Neill, “The Target of Daptomycin is Absent from Escherichia coli and Other Gram-Negative Pathogens,” Antimicrobial Agents and Chemotherapy 57, no. 1 (2013): 637-639, https://doi.org/10.1128/AAC.02005-12.

[51]

D. Lin and A. Grossfield, “Thermodynamics of Antimicrobial Lipopeptide Binding to Membranes: Origins of Affinity and Selectivity,” Biophysical Journal 107, no. 8 (2014): 1862-1872, https://doi.org/10.1016/j.bpj.2014.08.026.

[52]

P. Job, “Formation and Stability of Inorganic Complexes in Solution,” Annales de Chimie 10 (1928): 113-203.

[53]

T. Ramirez, A. Strigun, A. Verlohner, et al., “Prediction of Liver Toxicity and Mode of Action Using Metabolomics in Vitro in HepG2 Cells,” Archives of Toxicology 92 (2018): 893-906, https://doi.org/10.1007/s00204-017-2079-6.

[54]

M. J. Gómez-Lechón, L. Tolosa, I. Conde, and M. T. Donato, “Competency of Different Cell Models to Predict human Hepatotoxic Drugs,” Expert Opinion on Drug Metabolism & Toxicology 10, no. 11 (2014): 1553-1568, https://doi.org/10.1517/17425255.2014.967680.

[55]

V. J. Stella, V. M. Rao, E. A. Zannou, and V. V. Zia, “Mechanisms of Drug Release from Cyclodextrin Complexes,” Advanced Drug Delivery Reviews 36, no. 1 (1999): 3-16, https://doi.org/10.1016/s0169-409x(98)00052-0.

[56]

I. Wiegand, K. Hilpert, and R. E. W. Hancock, “Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances,” Nature Protocols 3, no. 2 (2008): 163-175, https://doi.org/10.1038/nprot.2007.521.

[57]

L. Szente, I. Puskás, T. Sohajda, et al., “Sulfobutylether-Beta-Cyclodextrin-Enabled Antiviral Remdesivir: Characterization of Electrospun- and Lyophilized Formulations,” Carbohydrate Polymers 264 (2021): 118011, https://doi.org/10.1016/j.carbpol.2021.118011.

[58]

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and Testing of a General Amber Force Field,” Journal of Computational Chemistry 25, no. 9 (2004): 1157-1174, https://doi.org/10.1002/jcc.20035.

[59]

H. C. Andersen, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” Journal of Chemical Physics 72, no. 4 (1980): 2384-2393, https://doi.org/10.1063/1.439486.

[60]

S. Miyamoto and P. A. Kollman, “Settle: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models,” Journal of Computational Chemistry 13, no. 8 (1992): 952-962, https://doi.org/10.1002/jcc.540130805.

[61]

T. Darden, D. York, and L. Pedersen, “Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems,” Journal of Chemical Physics 98, no. 12 (1993): 10089-10092, https://doi.org/10.1063/1.464397.

[62]

C. S. Johnson, “Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications,” Progress in Nuclear Magnetic Resonance Spectroscopy 34, no. 3-4 (1999): 203-256, https://doi.org/10.1016/S0079-6565(99)00003-5.

[63]

T. F. G. G. Cova, S. M. A. Cruz, A. J. M. Valente, P. E. Abreu, J. M. C. Marques, and A. A. C. C. Pais, “Aggregation of Cyclodextrins: Fundamental Issues and Applications,” in Cyclodextrin—A Versatile Ingredient, eds. P. Arora and N. Dhingra (InTech, 2018).

[64]

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of Simple Potential Functions for Simulating Liquid Water,” Journal of Chemical Physics 79, no. 2 (1983): 926-935, https://doi.org/10.1063/1.445869.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/