PDF
Abstract
The repair and functional reconstruction of bone defects resulting from trauma, surgical resection, degenerative diseases, and congenital malformations are major clinical challenges. Bone tissue engineering has significant advantages in the treatment of severe bone defects. Vascularized bone repair scaffolds are gradually attracting attention and development because of their excellent biomimetic properties and efficient repair efficiency. Three-dimensional (3D) printing technology, which can be used to fabricate structures at different scales using a wide range of materials, has been used in the production of vascularized bone repair scaffolds. This review discusses the research progress in 3D printing for vascularized bone repair scaffolds. Angiogenesis-osteogenesis coupling in the bone regeneration process is first introduced, followed by a summary of the 3D printing technologies, printing inks, and bioactive factors used to fabricate vascularized bone repair scaffolds. Notably, this review focuses on structural design strategies for vascularized bone repair scaffolds. Finally, the application of vascularized bone repair scaffolds in medicine, as well as challenges and outlooks for future development, are described.
Keywords
angiogenesis
/
osteogenesis
/
printing
/
bioprinting
/
polymer
Cite this article
Download citation ▾
Jiaxuan Fan, Zichuan Ding, Yongrui Cai, Yahao Lai, Chao Huang, Boyi Jiang, Zongke Zhou, Zeyu Luo.
Revolutionizing Bone Regeneration: Vascularized Bone Tissue Engineering with Advanced 3D Printing Technology.
Aggregate, 2025, 6(4): e731 DOI:10.1002/agt2.731
| [1] |
E. García-Gareta, M. J. Coathup, and G. W. Blunn, “Osteoinduction of Bone Grafting Materials for Bone Repair and Regeneration,” Bone 81 (2015): 112-121.
|
| [2] |
S. J. Hollister, “Porous Scaffold Design for Tissue Engineering,” Nature Materials 4 (2005): 518-524.
|
| [3] |
A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating Bone With Bioactive Glass Scaffolds: A Review of In Vivo Studies in Bone Defect Models,” Acta Biomaterialia 62 (2017): 1-28.
|
| [4] |
G. Zhu, T. Zhang, M. Chen, et al., “Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-tissue Engineering Scaffolds,” Bioactive Materials 6 (2021): 4110-4140.
|
| [5] |
G. Borciani, G. Montalbano, N. Baldini, G. Cerqueni, C. Vitale-Brovarone, and G. Ciapetti, “Co-culture Systems of Osteoblasts and Osteoclasts: Simulating in Vitro Bone Remodeling in Regenerative Approaches,” Acta Biomaterialia 108 (2020): 22-45.
|
| [6] |
S. M. Giannitelli, P. Mozetic, M. Trombetta, and A. Rainer, “Combined Additive Manufacturing Approaches in Tissue Engineering,” Acta Biomaterialia 24 (2015): 1-11.
|
| [7] |
M. Chaaban, A. Moya, A. García-García, et al., “Harnessing human Adipose-derived Stromal Cell Chondrogenesis in Vitro for Enhanced Endochondral Ossification,” Biomaterials 303 (2023): 122387.
|
| [8] |
H. G. Augustin and G. Y. Koh, “Organotypic Vasculature: From Descriptive Heterogeneity to Functional Pathophysiology,” Science 357 (2017), eaal2379.
|
| [9] |
C. Greenhill, “Bone Formation of Blood Vessels in Bone Maturation and Regeneration,” Nature Reviews Endocrinology 10 (2014): 250.
|
| [10] |
A. P. Kusumbe, S. K. Ramasamy, and R. H. Adams, “Coupling of Angiogenesis and Osteogenesis by a Specific Vessel Subtype in Bone,” Nature 507 (2014): 323-328.
|
| [11] |
S. Rafii, J. M. Butler, and B. S. Ding, “Angiocrine Functions of Organ-specific Endothelial Cells,” Nature 529 (2016): 316-325.
|
| [12] |
M. U. Aslam Khan, M. A. Aslam, M. F. Bin Abdullah, and G. M. Stojanović, “Current Perspectives of Protein in Bone Tissue Engineering: Bone Structure, Ideal Scaffolds, Fabrication Techniques, Applications, Scopes, and Future Advances,” ACS Applied Bio Materials 7 (2024): 5082-5106.
|
| [13] |
H. N. Chia and B. M. Wu, “Recent Advances in 3D Printing of Biomaterials,” Journal of Biological Engineering 9 (2015): 4.
|
| [14] |
R. Trombetta, J. A. Inzana, E. M. Schwarz, S. L. Kates, and H. A. Awad, “3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery,” Annals of Biomedical Engineering 45 (2017): 23-44.
|
| [15] |
Z. Luo, G. Tang, H. Ravanbakhsh, et al., “Vertical Extrusion Cryo(bio)Printing for Anisotropic Tissue Manufacturing,” Advanced Materials 34 (2022): e2108931.
|
| [16] |
U. Ripamonti, L. C. Roden, and L. F. Renton, “Osteoinductive Hydroxyapatite-coated Titanium Implants,” Biomaterials 33 (2012): 3813-3823.
|
| [17] |
B. Sacchetti, A. Funari, S. Michienzi, et al., “Self-renewing Osteoprogenitors in Bone Marrow Sinusoids Can Organize a Hematopoietic Microenvironment,” Cell 131, 2(2007): 324-336.
|
| [18] |
R. E. Tomlinson and M. J. Silva, “Skeletal Blood Flow in Bone Repair and Maintenance,” Bone Resorption 1 (2013): 311-322.
|
| [19] |
M. L. Brandi and P. Collin-Osdoby, “Vascular Biology and the Skeleton,” Journal of Bone and Mineral Research 21, 2(2006): 183-192.
|
| [20] |
H. M. Kronenberg, “Developmental Regulation of the Growth Plate,” Nature 423 (2003): 332-336.
|
| [21] |
R. Amarilio, S. V. Viukov, A. Sharir, I. Eshkar-Oren, R. S. Johnson, and E. Zelzer, “HIF1alpha regulation of Sox9 Is Necessary to Maintain Differentiation of Hypoxic Prechondrogenic Cells During Early Skeletogenesis,” Development 134 (2007): 3917-3928.
|
| [22] |
E. Araldi and E. Schipani, “Hypoxia, HIFs and Bone Development,” Bone 47 (2010): 190-196.
|
| [23] |
C. Maes, T. Kobayashi, M. K. Selig, et al., “Osteoblast Precursors, but Not Mature Osteoblasts, Move Into Developing and Fractured Bones Along With Invading Blood Vessels,” Developmental Cell 19 (2010): 329-344.
|
| [24] |
N. Dirckx, M. Van Hul, and C. Maes, “Osteoblast Recruitment to Sites of Bone Formation in Skeletal Development, Homeostasis, and Regeneration,” Birth Defects Research. Part C, Embryo Today 99 (2013): 170-191.
|
| [25] |
U. H. Langen, M. E. Pitulescu, J. M. o Kim, et al., “Cell-matrix Signals Specify Bone Endothelial Cells During Developmental Osteogenesis,” Nature Cell Biology 19 (2017): 189-201.
|
| [26] |
E. Zelzer and B. R. Olsen, “The Genetic Basis for Skeletal Diseases,” Nature 423 (2003): 343-348.
|
| [27] |
M. M. L. Deckers, R. L. Van Bezooijen, G. Van Der Horst, et al., “Bone Morphogenetic Proteins Stimulate Angiogenesis Through Osteoblast-derived Vascular Endothelial Growth Factor A,” Endocrinology 143 (2002): 1545-1553.
|
| [28] |
F. Long and D. M. Ornitz, “Development of the Endochondral Skeleton,” Cold Spring Harbor Perspectives in Biology 5 (2013): a008334.
|
| [29] |
N. L. Fazzalari, “Bone Fracture and Bone Fracture Repair,” Osteoporosis International 22 (2011): 2003-2006.
|
| [30] |
X. Wang, Y.u Wang, W. Gou, Q. Lu, J. Peng, and S. Lu, “Role of Mesenchymal Stem Cells in Bone Regeneration and Fracture Repair: A Review,” International Orthopaedics 37 (2013): 2491-2498.
|
| [31] |
R. Marsell and T. A. Einhorn, “The Biology of Fracture Healing,” Injury 42 (2011): 551-555.
|
| [32] |
T. J. Cho, L. C. Gerstenfeld, and T. A. Einhorn, “Differential Temporal Expression of Members of the Transforming Growth Factor Beta Superfamily During Murine Fracture Healing,” Journal of Bone and Mineral Research 17 (2002): 513-520.
|
| [33] |
J. Street, D. Winter, J. H. Wang, A. Wakai, A. Mcguinness, and H. P. Redmond, “Is human Fracture Hematoma Inherently Angiogenic?,” Clinical Orthopaedics and Related Research 378 (2000): 224-237.
|
| [34] |
C. Maes, “Placental Growth Factor Mediates Mesenchymal Cell Development, Cartilage Turnover, and Bone Remodeling During Fracture Repair,” Journal of Clinical Investigation 116 (2006): 1230-1242.
|
| [35] |
J. R. Lieberman, A. Daluiski, and T. A. Einhorn, “The Role of Growth Factors in the Repair of Bone. Biology and Clinical Applications,” Journal of Bone and Joint Surgery. American 84 (2002): 1032-1044.
|
| [36] |
J. Street, M. Bao, L. Deguzman, et al., “Vascular Endothelial Growth Factor Stimulates Bone Repair by Promoting Angiogenesis and Bone Turnover,” Proceeding of the National Academy of Sciences of the United States of America 99 (2002): 9656-9661.
|
| [37] |
H. Gerhardt, M. Golding, M. Fruttiger, et al., “VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia,” Journal of Cell Biology 161 (2003): 1163-1177.
|
| [38] |
J. Trueta, “Blood Supply and the Rate of Healing of Tibial Fractures,” Clinical Orthopaedics and Related Research 105 (1974): 11-26.
|
| [39] |
P. M. Mountziaris and A. G. Mikos, “Modulation of the Inflammatory Response for Enhanced Bone Tissue Regeneration,” Tissue Engineering. Part B, Reviews 14 (2008): 179-186.
|
| [40] |
C. S. Bahney, D. P. Hu, T. Miclau, and R. S. Marcucio, “The Multifaceted Role of the Vasculature in Endochondral Fracture Repair,” Frontiers in Endocrinology (Lausanne) 6 (2015): 4.
|
| [41] |
M. U. Aslam Khan, A. Haider, S. I. Abd Razak, et al., “Arabinoxylan/Graphene-oxide/nHAp-NPs/PVA Bionano Composite Scaffolds for Fractured Bone Healing,” Journal of Tissue Engineering and Regenerative Medicine 15 (2021): 322-335.
|
| [42] |
K. K. Sivaraj and R. H. Adams, “Blood Vessel Formation and Function in Bone,” Development (Cambridge, England) 143 (2016): 2706-2715.
|
| [43] |
L. Moroni, J. A. Burdick, C. Highley, et al., “Biofabrication Strategies for 3D in Vitro Models and Regenerative Medicine,” Nature Reviews Materials 3 (2018): 21-37.
|
| [44] |
P. N. Bernal, P. Delrot, D. Loterie, et al., “Volumetric Bioprinting of Complex Living-Tissue Constructs Within Seconds,” Advanced Materials 31 (2019): e1904209.
|
| [45] |
W. Li, L. S. Mille, J. A. Robledo, T. Uribe, V. Huerta, and Y.u S. Zhang, “Recent Advances in Formulating and Processing Biomaterial Inks for Vat Polymerization-Based 3D Printing,” Advanced Healthcare Materials 9 (2020): e2000156.
|
| [46] |
N. A. Chartrain, C. B. Williams, and A. R. Whittington, “A Review on Fabricating Tissue Scaffolds Using Vat Photopolymerization,” Acta Biomaterialia 74 (2018): 90-111.
|
| [47] |
J. Gehlen, W. Qiu, G. N. Schädli, R. Müller, and X. H. Qin, “Tomographic Volumetric Bioprinting of Heterocellular Bone-Like Tissues in Seconds,” Acta Biomaterialia 156 (2023): 49-60.
|
| [48] |
D. I. Stoia, E. Linul, and L. Marsavina, “Influence of Manufacturing Parameters on Mechanical Properties of Porous Materials by Selective Laser Sintering,” Materials (Basel) 12 (2019): 871.
|
| [49] |
N. A. Charoo, S. F. Barakh Ali, E. M. Mohamed, et al., “Selective Laser Sintering 3D Printing—an Overview of the Technology and Pharmaceutical Applications,” Drug Development and Industrial Pharmacy 46 (2020): 869-877.
|
| [50] |
J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective Laser Melting of Iron-based Powder,” Journal of Materials Processing Technology 149 (2004): 616-622.
|
| [51] |
Y. Du, H. Liu, J. Shuang, J. Wang, J. Ma, and S. Zhang, “Microsphere-based Selective Laser Sintering for Building Macroporous Bone Scaffolds With Controlled Microstructure and Excellent Biocompatibility,” Colloids and Surfaces. B, Biointerfaces 135 (2015): 81-89.
|
| [52] |
H. Liu, Y. Du, G. Yang, et al., “Delivering Proangiogenic Factors From 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration,” Advanced Healthcare Materials (2020): e2000727.
|
| [53] |
X. Gu, Y. Zha, Y. Li, et al., “Integrated Polycaprolactone Microsphere-based Scaffolds With Biomimetic Hierarchy and Tunable Vascularization for Osteochondral Repair,” Acta Biomaterialia 141 (2022): 190-197.
|
| [54] |
M. Pagac, J. Hajnys, Q. P. Ma, et al., “A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing,” Polymers (Basel) 13 (2021): 598.
|
| [55] |
A. Bagheri and J. Jin, “Photopolymerization in 3D Printing,” ACS Applied Polymer Materials 1 (2019): 593-611.
|
| [56] |
S. Gao, J. Li, Q. Lei, et al., “Calcium Sulfate-Cu(2+) Delivery System Improves 3D-Printed Calcium Silicate Artificial Bone to Repair Large Bone Defects,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1224557.
|
| [57] |
S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in Tissue Engineering,” Journal of Materials Science. Materials in Medicine 25 (2014): 845-856.
|
| [58] |
K. Kim, D. Dean, J. Wallace, R. Breithaupt, A. G. Mikos, and J. P. Fisher, “The Influence of Stereolithographic Scaffold Architecture and Composition on Osteogenic Signal Expression With Rat Bone Marrow Stromal Cells,” Biomaterials 32 (2011): 3750-3763.
|
| [59] |
A. K. Miri, A. Khalilpour, B. Cecen, S. Maharjan, S.u R. Shin, and A. Khademhosseini, “Multiscale Bioprinting of Vascularized Models,” Biomaterials 198 (2019): 204-216.
|
| [60] |
H. Liang, Y. Wang, S. Chen, Y. Liu, Z. Liu, and J. Bai, “Nano-Hydroxyapatite Bone Scaffolds With Different Porous Structures Processed by Digital Light Processing 3D Printing,” International Journal of Bioprinting 8 (2022): 502.
|
| [61] |
S. Xiong, Y. Zhang, J. Zeng, et al., “DLP Fabrication of HA Scaffold With Customized Porous Structures to Regulate Immune Microenvironment and Macrophage Polarization for Enhancing Bone Regeneration,” Materials Today Bio 24 (2024): 100929.
|
| [62] |
G. Liu, B. Zhang, T. Wan, et al., “A 3D-printed Biphasic Calcium Phosphate Scaffold Loaded With Platelet Lysate/Gelatin Methacrylate to Promote Vascularization,” Journal of Materials Chemistry B 10 (2022): 3138-3151.
|
| [63] |
H. Wang, X. Li, S. Lai, et al., “Construction of Vascularized Tissue Engineered Bone With nHA-Coated BCP Bioceramics Loaded With Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect,” ACS Applied Materials & Interfaces 15 (2023): 249-264.
|
| [64] |
B. Feng, “3D printing of Conch-Like Scaffolds for Guiding Cell Migration and Directional Bone Growth,” Bioactive Materials 22 (2023): 127-140.
|
| [65] |
M. Rajput, P. Mondal, P. Yadav, and K. Chatterjee, “Light-based 3D Bioprinting of Bone Tissue Scaffolds With Tunable Mechanical Properties and Architecture From Photocurable Silk Fibroin,” International Journal of Biological Macromolecules 202 (2022): 644-656.
|
| [66] |
Y.i Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, “A Digital Micro-mirror Device-based System for the Microfabrication of Complex, Spatially Patterned Tissue Engineering Scaffolds,” Journal of Biomedical Materials Research. Part A 77 (2006): 396-405.
|
| [67] |
J. Gao, H. Wang, M. Li, et al., “DLP-printed GelMA-PMAA Scaffold for Bone Regeneration Through Endochondral Ossification,” International Journal of Bioprinting 9 (2023): 754.
|
| [68] |
F. Gholami, L. Yue, M. Li, et al., “Fast and Efficient Fabrication of Functional Electronic Devices Through Grayscale Digital Light Processing 3D Printing,” Advanced Materials 36 (2024): e2408774.
|
| [69] |
M. Xie, L. Lian, X. Mu, et al., “Volumetric Additive Manufacturing of Pristine Silk-based (bio)Inks,” Nature Communications 14 (2023): 210.
|
| [70] |
B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric Additive Manufacturing via Tomographic Reconstruction,” Science 363 (2019): 1075-1079.
|
| [71] |
L. Lian, M. Xie, Z. Luo, et al., “Rapid Volumetric Bioprinting of Decellularized Extracellular Matrix Bioinks,” Advanced Materials (2024): e2304846.
|
| [72] |
M. Shusteff, A. E. M. Browar, B. E. Kelly, et al., “One-step Volumetric Additive Manufacturing of Complex Polymer Structures,” Science Advances 3 (2017): eaao5496.
|
| [73] |
I. T. Ozbolat and M. Hospodiuk, “Current Advances and Future Perspectives in Extrusion-based Bioprinting,” Biomaterials 76 (2016): 321-343.
|
| [74] |
Z. Jiang, B. Diggle, M. L. i Tan, J. Viktorova, C. W. Bennett, and L. A. Connal, “Extrusion 3D Printing of Polymeric Materials With Advanced Properties,” Advanced Science (Weinh) 7 (2020): 2001379.
|
| [75] |
V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, “Organ Printing: Computer-aided Jet-based 3D Tissue Engineering,” Trends in Biotechnology 21 (2003): 157-161.
|
| [76] |
I. C. P. Rodrigues, L. C. Orrantia Clark, X. Kuang, et al., “Multimaterial Coextrusion (bio)Printing of Composite Polymer Biomaterial Ink and Hydrogel Bioink for Tissue Fabrication,” Composites Part B: Engineering 275 (2024): 111337.
|
| [77] |
L. L. Wang, C. B. Highley, Y.i-C. Yeh, J. H. Galarraga, S. Uman, and J. A. Burdick, “Three-dimensional Extrusion Bioprinting of Single- and Double-network Hydrogels Containing Dynamic Covalent Crosslinks,” Journal of Biomedical Materials Research. Part A 106 (2018): 865-875.
|
| [78] |
X. Pu, L. Tong, X. Wang, et al., “Bioinspired Hydrogel Anchoring 3DP GelMA/HAp Scaffolds Accelerates Bone Reconstruction,” ACS Applied Materials & Interfaces 14 (2022): 20591-20602.
|
| [79] |
J. Zheng, Y. Wang, Y. Wang, R. Duan, and L. Liu, “Gelatin/Hyaluronic Acid Photocrosslinked Double Network Hydrogel With Nano-Hydroxyapatite Composite for Potential Application in Bone Repair,” Gels 9 (2023): 742.
|
| [80] |
Y. Wang, Z. Yuan, Y. Pang, et al., “Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated With Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration,” ACS Applied Materials & Interfaces 15 (2023): 20661-20676.
|
| [81] |
A. Iglesias-Mejuto and C. A. García-González, “3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering,” Polymers (Basel) 14 (2022): 1211.
|
| [82] |
S. Wickramasinghe, T. Do, and Tran, “FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments,” Polymers (Basel) 12 (2020): 1529.
|
| [83] |
A. Kafle, E. Luis, R. Silwal, H. M. Pan, P. L. Shrestha, and A. K. Bastola, “3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA),” Polymers (Basel) 13 (2021): 3101.
|
| [84] |
N. Aliheidari, “Interlayer Adhesion and Fracture Resistance of Polymers Printed Through Melt Extrusion Additive Manufacturing Process,” Materials & Design 156 (2018): 351-361.
|
| [85] |
S. Salehi, M. Tavakoli, M. Mirhaj, et al., “A 3D Printed Polylactic Acid-Baghdadite Nanocomposite Scaffold Coated With Microporous Chitosan-VEGF for Bone Regeneration Applications,” Carbohydrate Polymers 312 (2023): 120787.
|
| [86] |
X. Feng, L. Ma, H. Liang, et al., “Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds With Different Pore Sizes,” ACS Omega 5 (2020): 26655-26666.
|
| [87] |
Z. Xiong, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-temperature Deposition,” Scripta Materialia 46 (2002): 771-776.
|
| [88] |
M. Lian, B. Sun, Y.u Han, et al., “A Low-temperature-printed Hierarchical Porous Sponge-Like Scaffold That Promotes Cell-material Interaction and Modulates Paracrine Activity of MSCs for Vascularized Bone Regeneration,” Biomaterials 274 (2021): 120841.
|
| [89] |
M. U. A. Khan, M. Rizwan, S. I. A. Razak, A. Hassan, T. Rasheed, and M. Bilal, “Electroactive Polymeric Nanocomposite BC-g-(Fe(3)O(4)/GO) Materials for Bone Tissue Engineering: In Vitro Evaluations,” Journal of Biomaterials Science, Polymer Edition 33 (2022): 1349-1368.
|
| [90] |
Z. Qiao, M. Lian, Y.u Han, et al., “Bioinspired Stratified Electrowritten fiber-reinforced Hydrogel Constructs With Layer-specific Induction Capacity for Functional Osteochondral Regeneration,” Biomaterials 266 (2021): 120385.
|
| [91] |
K. F. Eichholz, S. Von Euw, R. Burdis, D. J. Kelly, and D. A. Hoey, “Development of a New Bone-Mimetic Surface Treatment Platform: Nanoneedle Hydroxyapatite (nnHA) Coating,” Advanced Healthcare Materials 9 (2020): e2001102.
|
| [92] |
B. Wang, Y. Zeng, S. Liu, et al., “ZIF-8 Induced Hydroxyapatite-Like Crystals Enabled Superior Osteogenic Ability of MEW Printing PCL Scaffolds,” Journal of Nanobiotechnology 21 (2023): 264.
|
| [93] |
Q. S. Thorsnes, P. R. Turner, M. A. Ali, and J. D. Cabral, “Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature,” Biomedicines 11 (2023): 3139.
|
| [94] |
H. Cui, W. Zhu, M. Nowicki, X. Zhou, A. Khademhosseini, and L. G. Zhang, “Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors Into Architectural Design,” Advanced Healthcare Materials 5 (2016): 2174-2181.
|
| [95] |
S. Y. Hann, H. Cui, T. Esworthy, et al., “Dual 3D Printing for Vascularized Bone Tissue Regeneration,” Acta Biomaterialia 123 (2021): 263-274.
|
| [96] |
S. V. Murphy, P. De Coppi, and A. Atala, “Opportunities and Challenges of Translational 3D Bioprinting,” Nature Biomedical Engineering 4 (2020): 370-380.
|
| [97] |
K. Markstedt, A. Mantas, I. Tournier, H. Martínez Ávila, D. Hägg, and P. Gatenholm, “3D Bioprinting Human Chondrocytes With Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications,” Biomacromolecules 16 (2015): 1489-1496.
|
| [98] |
T. Xu, J. Olson, W. Zhao, A. Atala, J. M. Zhu, and J. J. Yoo, “Characterization of Cell Constructs Generated with Inkjet Printing Technology Using in Vivo Magnetic Resonance Imaging,” Journal of Manufacturing Science and Engineering 130 (2008).
|
| [99] |
R. Chang, J. Nam, and W. Sun, “Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication-based Direct Cell Writing,” Tissue Engineering Part A 14 (2008): 41-48.
|
| [100] |
M. Dey and I. T. Ozbolat, “3D bioprinting of Cells, Tissues and Organs,” Scientific Reports 10 (2020): 14023.
|
| [101] |
J. Nulty, F. E. Freeman, D. C. Browe, et al., “3D bioprinting of Prevascularised Implants for the Repair of Critically-sized Bone Defects,” Acta Biomaterialia 126 (2021): 154-169.
|
| [102] |
A. Lee, A. R. Hudson, D. J. Shiwarski, et al., “3D bioprinting of Collagen to Rebuild Components of the human Heart,” Science 365 (2019): 482-487.
|
| [103] |
H. Liu, Y. Du, G. Yang, et al., “Delivering Proangiogenic Factors From 3D-Printed Polycaprolactone Scaffolds for Vascularized Bone Regeneration,” Advanced Healthcare Materials 9 (2020): e2000727.
|
| [104] |
Y. Q. Zhao, “Polycaprolactone/Polysaccharide Functional Composites for Low-temperature Fused Deposition Modelling,” Bioactive Materials 5 (2020): 185-191.
|
| [105] |
J. C. Kade and P. D. Dalton, “Polymers for Melt Electrowriting,” Advanced Healthcare Materials 10 (2021): e2001232.
|
| [106] |
S. V. Murphy and A. Atala, “3D bioprinting of Tissues and Organs,” Nature Biotechnology 32 (2014): 773-785.
|
| [107] |
J. Wang, Y. Wu, G. Li, et al., “Engineering Large-Scale Self-Mineralizing Bone Organoids With Bone Matrix-Inspired Hydroxyapatite Hybrid Bioinks,” Advanced Materials 36 (2024): e2309875.
|
| [108] |
X. Yu, W. Shou, B. K. Mahajan, X. Huang, and H. Pan, “Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review,” Advanced Materials 30 (2018): e1707624.
|
| [109] |
Y. Yang, Q. Zhang, T. Xu, et al., “Photocrosslinkable Nanocomposite Ink for Printing Strong, Biodegradable and Bioactive Bone Graft,” Biomaterials 263 (2020): 120378.
|
| [110] |
C. Wang, H. Xu, C. Liu, et al., “CaO(2)/Gelatin Oxygen Slow-releasing Microspheres Facilitate Tissue Engineering Efficiency for the Osteonecrosis of Femoral Head by Enhancing the Angiogenesis and Survival of Grafted Bone Marrow Mesenchymal Stem Cells,” Biomaterials Science 9 (2021): 3005-3018.
|
| [111] |
S. Murab, A. Gupta, M. K. Włodarczyk-Biegun, et al., “Alginate Based Hydrogel Inks for 3D Bioprinting of Engineered Orthopedic Tissues,” Carbohydrate Polymers 296 (2022): 119964.
|
| [112] |
A. Blaeser, N. Million, D. F. D. Campos, et al., “Laser-based in Situ Embedding of Metal Nanoparticles Into Bioextruded Alginate Hydrogel Tubes Enhances human Endothelial Cell Adhesion,” Nano Research 9 (2016): 3407-3427.
|
| [113] |
M. U. A. Khan, S. I. A. Razak, S. Rehman, A. Hasan, S. Qureshi, and G. M. Stojanović, “Bioactive Scaffold (sodium alginate)-g-(nHAp@SiO(2)@GO) for Bone Tissue Engineering,” International Journal of Biological Macromolecules 222 (2022): 462-472.
|
| [114] |
Y. Tan, S. Fan, X. Wu, et al., “Fabrication of a Three-dimensional Printed Gelatin/Sodium Alginate/Nano-attapulgite Composite Polymer Scaffold Loaded With Leonurine Hydrochloride and Its Effects on Osteogenesis and Vascularization,” International Journal of Biological Macromolecules 249 (2023): 126028.
|
| [115] |
G. Cidonio, M. Glinka, Y. H. Kim, et al., “Nanoclay-based 3D Printed Scaffolds Promote Vascular Ingrowth Ex Vivo and Generate Bone Mineral Tissue in Vitro and in Vivo,” Biofabrication 12 (2020): 035010.
|
| [116] |
W. Zhang, C. Feng, G. Yang, et al., “3D-printed Scaffolds With Synergistic Effect of Hollow-pipe Structure and Bioactive Ions for Vascularized Bone Regeneration,” Biomaterials 135 (2017): 85-95.
|
| [117] |
T. Ghahri, Z. Salehi, S. Aghajanpour, et al., “Development of Osteon-Like Scaffold-cell Construct by Quadruple Coaxial Extrusion-based 3D Bioprinting of Nanocomposite Hydrogel,” Biomaterials Advances 145 (2023): 213254.
|
| [118] |
C. Twohig, M. Helsinga, A. Mansoorifar, et al., “A Dual-ink 3D Printing Strategy to Engineer Pre-vascularized Bone Scaffolds in-vitro,” Materials Science & Engineering C-Materials For Biological Applications 123 (2021): 111976.
|
| [119] |
Y. Liu and M. B. Chan-Park, “A Biomimetic Hydrogel Based on Methacrylated Dextran-graft-lysine and Gelatin for 3D Smooth Muscle Cell Culture,” Biomaterials 31 (2010): 1158-1170.
|
| [120] |
P. E. Van Den Steen, B. Dubois, I. Nelissen, P. M. Rudd, R. A. Dwek, and G. Opdenakker, “Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9),” Critical Reviews in Biochemistry and Molecular Biology 37 (2002): 375-536.
|
| [121] |
A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, “Structural and Rheological Properties of Methacrylamide Modified Gelatin Hydrogels,” Biomacromolecules 1 (2000): 31-38.
|
| [122] |
H. Aubin, J. W. Nichol, C. B. Hutson, et al., “Directed 3D Cell Alignment and Elongation in Microengineered Hydrogels,” Biomaterials 31 (2010): 6941-6951.
|
| [123] |
C. Xu, Y. Chang, Y. Xu, et al., “Silicon-Phosphorus-Nanosheets-Integrated 3D-Printable Hydrogel as a Bioactive and Biodegradable Scaffold for Vascularized Bone Regeneration,” Advanced Healthcare Materials 11 (2022): e2101911.
|
| [124] |
Z. Li, S. Li, J. Yang, et al., “3D bioprinted Gelatin/Gellan Gum-based Scaffold With Double-crosslinking Network for Vascularized Bone Regeneration,” Carbohydrate Polymers 290 (2022): 119469.
|
| [125] |
T. Anada, C. C. Pan, A. M. Stahl, et al., “Vascularized Bone-Mimetic Hydrogel Constructs by 3D Bioprinting to Promote Osteogenesis and Angiogenesis,” International Journal of Molecular Sciences 20 (2019): 1096.
|
| [126] |
X. Ye, J. He, S. Wang, et al., “A Hierarchical Vascularized Engineered Bone Inspired by Intramembranous Ossification for Mandibular Regeneration,” International Journal of Oral Science 14 (2022): 31.
|
| [127] |
F. Curti, D. M. Drăgușin, A. Serafim, H. Iovu, and I. C. Stancu, “Development of Thick Paste-Like Inks Based on Superconcentrated Gelatin/Alginate for 3D Printing of Scaffolds With Shape Fidelity and Stability,” Materials Science & Engineering C-Materials For Biological Applications 122 (2021): 111866.
|
| [128] |
S. D. Aznar-Cervantes, A. Pagan, B. Monteagudo Santesteban, and J. L. Cenis, “Effect of Different Cocoon Stifling Methods on the Properties of Silk Fibroin Biomaterials,” Scientific Reports 9 (2019): 6703.
|
| [129] |
S. Chawla, S. Midha, A. Sharma, and S. Ghosh, “Silk-Based Bioinks for 3D Bioprinting,” Advanced Healthcare Materials 7 (2018): e1701204.
|
| [130] |
V. Fitzpatrick, Z. Martín-Moldes, A. Deck, et al., “Functionalized 3D-printed Silk-hydroxyapatite Scaffolds for Enhanced Bone Regeneration With Innervation and Vascularization,” Biomaterials 276 (2021): 120995.
|
| [131] |
M. Zhou, X. Wu, J. Luo, et al., “Copper Peptide-incorporated 3D-printed Silk-based Scaffolds Promote Vascularized Bone Regeneration,” Chemical Engineering Journal 422 (2021): 130147.
|
| [132] |
S. H. Oh, “Fabrication and Characterization of Hydrophilic Poly(lactic-co-glycolic acid)/Poly(vinyl alcohol) Blend Cell Scaffolds by Melt-molding Particulate-leaching Method,” Biomaterials 24 (2003): 4011-4021.
|
| [133] |
F. A. Sheikh, H. W. Ju, B.o M. i Moon, et al., “Hybrid Scaffolds Based on PLGA and Silk for Bone Tissue Engineering,” Journal of Tissue Engineering and Regenerative Medicine 10 (2016): 209-221.
|
| [134] |
M. U. A. Khan, S. I. A. Razak, M. N. M. Ansari, R. M. Zulkifli, N. Ahmad Zawawi, and M. Arshad, “Development of Biodegradable Bio-Based Composite for Bone Tissue Engineering: Synthesis, Characterization and in Vitro Biocompatible Evaluation,” Polymers (Basel) 13 (2021): 3611.
|
| [135] |
M. U. Aslam Khan, W. S. Al-Arjan, M. S. Binkadem, et al., “Development of Biopolymeric Hybrid Scaffold-Based on AAc/GO/nHAp/TiO(2) Nanocomposite for Bone Tissue Engineering: In-Vitro Analysis,” Nanomaterials (Basel) 11 (2021): 1319.
|
| [136] |
M. U. A. Khan, S. I. Abd Razak, H. Mehboob, et al., “Synthesis and Characterization of Silver-Coated Polymeric Scaffolds for Bone Tissue Engineering: Antibacterial and in Vitro Evaluation of Cytotoxicity and Biocompatibility,” ACS Omega 6 (2021): 4335-4346.
|
| [137] |
M. U. Aslam Khan, M. A. Raza, H. Mehboob, et al., “Development and in Vitro Evaluation of κ-carrageenan Based Polymeric Hybrid Nanocomposite Scaffolds for Bone Tissue Engineering,” RSC Advances 10 (2020): 40529-40542.
|
| [138] |
S. Yuan, G. Xiong, X. Wang, S. Zhang, and C. Choong, “Surface Modification of Polycaprolactone Substrates Using Collagen-conjugated Poly(methacrylic acid) Brushes for the Regulation of Cell Proliferation and Endothelialisation,” Journal of Materials Chemistry 22 (2012): 13039-13049.
|
| [139] |
X. Ji, X.i Yuan, L. Ma, et al., “Mesenchymal Stem Cell-loaded Thermosensitive Hydroxypropyl Chitin Hydrogel Combined With a Three-dimensional-printed Poly(ε-caprolactone) /Nano-hydroxyapatite Scaffold to Repair Bone Defects via Osteogenesis, Angiogenesis and Immunomodulation,” Theranostics 10 (2020): 725-740.
|
| [140] |
S. J. Lee, J. E. Won, C. Han, et al., “Development of a Three-dimensionally Printed Scaffold Grafted With Bone Forming Peptide-1 for Enhanced Bone Regeneration With in Vitro and in Vivo Evaluations,” Journal of Colloid & Interface Science 539 (2019): 468-480.
|
| [141] |
J. Lee, S. J. Huh, J.i M. Seok, et al., “Surface Engineering of 3D-printed Scaffolds With Minerals and a Pro-angiogenic Factor for Vascularized Bone Regeneration,” Acta Biomaterialia 140 (2022): 730-744.
|
| [142] |
M. Y. Shie, W. H. Chiang, I. W. P. Chen, W. Y. Liu, and Y. W. Chen, “Synergistic Acceleration in the Osteogenic and Angiogenic Differentiation of human Mesenchymal Stem Cells by Calcium Silicate-graphene Composites,” Materials Science & Engineering C-Materials For Biological Applications 73 (2017): 726-735.
|
| [143] |
D. Da Silva, M. Kaduri, M. Poley, et al., “Biocompatibility, Biodegradation and Excretion of Polylactic Acid (PLA) in Medical Implants and Theranostic Systems,” Chemical Engineering Journal 340 (2018): 9-14.
|
| [144] |
H. Xue, “Enhanced Tissue Regeneration Through Immunomodulation of Angiogenesis and Osteogenesis With a Multifaceted Nanohybrid Modified Bioactive Scaffold,” Bioactive Materials 18 (2022): 552-568.
|
| [145] |
J. F. Mano, R. A. Sousa, L. F. Boesel, N. M. Neves, and R. L. Reis, “Bioinert, Biodegradable and Injectable Polymeric Matrix Composites for Hard Tissue Replacement: State of the Art and Recent Developments,” Composites Science and Technology 64 (2004): 789-817.
|
| [146] |
H.-R.u Lin, C. J. Kuo, C. Y. Yang, S. Y. Shaw, and Y. J. Wu, “Preparation of Macroporous Biodegradable PLGA Scaffolds for Cell Attachment With the Use of Mixed Salts as Porogen Additives,” Journal of Biomedial Materials Research 63 (2002): 271-279.
|
| [147] |
K. K. Moncal, D. N. Heo, K. P. Godzik, et al., “3D printing of Poly(ε-caprolactone)/Poly(D,L-lactide-co-glycolide)/Hydroxyapatite Composite Constructs for Bone Tissue Engineering,” Journal of Materials Research 33 (2018): 1972-1986.
|
| [148] |
J. Ji, C. Wang, Z. Xiong, Y. Pang, and W. Sun, “3D-printed Scaffold With Halloysite Nanotubes Laden as a Sequential Drug Delivery System Regulates Vascularized Bone Tissue Healing,” Materials Today Advances 15 (2022): 100259.
|
| [149] |
H. Xiang, X. Dai, W. Xu, et al., “Cryogenic 3D Printing of Bifunctional Silicate Nanoclay Incorporated Scaffolds for Promoted Angiogenesis and Bone Regeneration,” Materials & Design 223 (2022): 111220.
|
| [150] |
C. Wang, J. Lai, K. Li, et al., “Cryogenic 3D Printing of Dual-delivery Scaffolds for Improved Bone Regeneration With Enhanced Vascularization,” Bioactive Materials 6 (2021): 137-145.
|
| [151] |
C. C. Niu, J. C. Liao, W. J. Chen, and L. H. Chen, “Outcomes of Interbody Fusion Cages Used in 1 and 2-levels Anterior Cervical Discectomy and Fusion: Titanium Cages versus Polyetheretherketone (PEEK) Cages,” Journal of Spinal Disorders & Techniques 23 (2010): 310-316.
|
| [152] |
K. E. Rankin, A. S. Dickinson, A. Briscoe, and M. Browne, “Does a PEEK Femoral TKA Implant Preserve Intact Femoral Surface Strains Compared with CoCr? A Preliminary Laboratory Study,” Clinical Orthopaedics and Related Research 474 (2016): 2405-2413.
|
| [153] |
Z. Sheikh, P. Brooks, O. Barzilay, N. Fine, and M. Glogauer, “Macrophages, Foreign Body Giant Cells and Their Response to Implantable Biomaterials,” Materials (Basel) 8 (2015): 5671-5701.
|
| [154] |
R. Trindade, T. Albrektsson, P. Tengvall, and A. Wennerberg, “Foreign Body Reaction to Biomaterials: On Mechanisms for Buildup and Breakdown of Osseointegration,” Clinical Implant Dentistry and Related Research 18 (2016): 192-203.
|
| [155] |
X. Wei, “Magnesium Surface-activated 3D Printed Porous PEEK Scaffolds for in Vivo Osseointegration by Promoting Angiogenesis and Osteogenesis,” Bioactive Materials 20 (2023): 16-28.
|
| [156] |
H. Seitz, W. Rieder, S. Irsen, B. Leukers, and C. Tille, “Three-dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 74 (2005): 782-788.
|
| [157] |
M. U. A. Khan, M. A. Aslam, M. F. B. Abdullah, et al., “Recent Advances of Bone Tissue Engineering: Carbohydrate and Ceramic Materials, Fundamental Properties and Advanced Biofabrication Strategies ‒ a Comprehensive Review,” Biomedical Materials 19 (2024): 052005.
|
| [158] |
M. U. A. Khan, S. Haider, S. A. Shah, et al., “Arabinoxylan-co-AA/HAp/TiO(2) Nanocomposite Scaffold a Potential Material for Bone Tissue Engineering: An in Vitro Study,” International Journal of Biological Macromolecules 151 (2020): 584-594.
|
| [159] |
S. Bose and S. Tarafder, “Calcium Phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review,” Acta Biomaterialia 8 (2012): 1401-1421.
|
| [160] |
A. Bandyopadhyay, S. Bernard, W. Xue, and S. Bose, “Calcium Phosphate-Based Resorbable Ceramics: Influence of MgO, ZnO, and SiO2 Dopants,” Journal of the American Ceramic Society 89 (2006): 2675-2688.
|
| [161] |
M. Yamada, M. Shiota, Y. Yamashita, and S. Kasugai, “Histological and Histomorphometrical Comparative Study of the Degradation and Osteoconductive Characteristics of Alpha- and Beta-tricalcium Phosphate in Block Grafts,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 82 (2007): 139-148.
|
| [162] |
N. Kondo, A. Ogose, K. Tokunaga, et al., “Bone Formation and Resorption of Highly Purified Beta-tricalcium Phosphate in the Rat Femoral Condyle,” Biomaterials 26 (2005): 5600-5608.
|
| [163] |
P. Proff and P. Römer, “The Molecular Mechanism Behind Bone Remodelling: A Review,” Clinical Oral Investigations 13 (2009): 355-362.
|
| [164] |
S. Pina, P. M. C. Torres, and J. M. F. Ferreira, “Injectability of Brushite-forming Mg-substituted and Sr-substituted α-TCP Bone Cements,” Journal of Materials Science: Materials in Medicine 21 (2010): 431-438.
|
| [165] |
H. H. Horch, R. Sader, C. Pautke, A. Neff, H. Deppe, and A. Kolk, “Synthetic, Pure-phase Beta-tricalcium Phosphate Ceramic Granules (Cerasorb) for Bone Regeneration in the Reconstructive Surgery of the Jaws,” International Journal of Oral and Maxillofacial Surgery 35 (2006): 708-713.
|
| [166] |
A. Ogose, T. Hotta, H. Kawashima, et al., “Comparison of Hydroxyapatite and Beta Tricalcium Phosphate as Bone Substitutes After Excision of Bone Tumors,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 72 (2005): 94-101.
|
| [167] |
S. Bose, S. Tarafder, and A. Bandyopadhyay, “Effect of Chemistry on Osteogenesis and Angiogenesis towards Bone Tissue Engineering Using 3D Printed Scaffolds,” Annals of Biomedical Engineering 45 (2017): 261-272.
|
| [168] |
Y. Lai, Y.e Li, H. Cao, et al., “Osteogenic Magnesium Incorporated Into PLGA/TCP Porous Scaffold by 3D Printing for Repairing Challenging Bone Defect,” Biomaterials 197 (2019): 207-219.
|
| [169] |
S. Bose, D. Banerjee, S. Robertson, and S. Vahabzadeh, “Enhanced in Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds,” Annals of Biomedical Engineering 46 (2018): 1241-1253.
|
| [170] |
G. Fielding and S. Bose, “SiO2 and ZnO Dopants in Three-dimensionally Printed Tricalcium Phosphate Bone Tissue Engineering Scaffolds Enhance Osteogenesis and Angiogenesis in Vivo,” Acta Biomaterialia 9 (2013): 9137-9148.
|
| [171] |
W. X. Cheng, Y. Z. Liu, X. B. Meng, et al., “PLGA/β-TCP Composite Scaffold Incorporating Cucurbitacin B Promotes Bone Regeneration by Inducing Angiogenesis,” Journal of Orthopaedic Translation 31 (2021): 41-51.
|
| [172] |
C. Liu, Z. Peng, H. Xu, et al., “3D Printed Platelet-Rich Plasma-Loaded Scaffold With Sustained Cytokine Release for Bone Defect Repair,” Tissue Engineering Part A 28 (2022): 700-711.
|
| [173] |
K. L. Spiller, R. R. Anfang, K. J. Spiller, et al., “The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds,” Biomaterials 35 (2014): 4477-4488.
|
| [174] |
T. Li, M. Peng, Z. Yang, et al., “3D-printed IFN-γ-loading Calcium Silicate-β-tricalcium Phosphate Scaffold Sequentially Activates M1 and M2 Polarization of Macrophages to Promote Vascularization of Tissue Engineering Bone,” Acta Biomaterialia 71 (2018): 96-107.
|
| [175] |
S. V. Dorozhkin, “Biphas, Biphasic, Triphasic and Multiphasic Calcium Orthophosphates,” Acta Biomaterialia 8 (2012): 963-977.
|
| [176] |
S. Yamada, D. Heymann, J. M. Bouler, and G. Daculsi, “Osteoclastic Resorption of Calcium Phosphate Ceramics With Different Hydroxyapatite/Beta-tricalcium Phosphate Ratios,” Biomaterials 18 (1997): 1037-1041.
|
| [177] |
J. M. Bouler, P. Pilet, O. Gauthier, and E. Verron, “Biphasic Calcium Phosphate Ceramics for Bone Reconstruction: A Review of Biological Response,” Acta Biomaterialia 53 (2017): 1-12.
|
| [178] |
Y. Cai, “Porous Microsphere and Its Applications,” International Journal of Nanomedicine 8 (2013): 1111-1120.
|
| [179] |
L. Vidal, M. Á. Brennan, S. Krissian, et al., “In Situ Production of Pre-vascularized Synthetic Bone Grafts for Regenerating Critical-sized Defects in Rabbits,” Acta Biomaterialia 114 (2020): 384-394.
|
| [180] |
Y. W. Chen, C. H. Yeh, and M. Y. Shie, “Stimulatory Effects of the Fast Setting and Suitable Degrading Ca-Si-Mg Cement on both Cementogenesis and Angiogenesis Differentiation of human Periodontal Ligament Cells,” Journal of Materials Chemistry B 3 (2015): 7099-7108.
|
| [181] |
Y. W. Chen, T. T. Hsu, K. Wang, and M. Y. Shie, “Preparation of the Fast Setting and Degrading Ca-Si-Mg Cement With both Odontogenesis and Angiogenesis Differentiation of human Periodontal Ligament Cells,” Materials Science & Engineering C-Materials For Biological Applications 60 (2016): 374-383.
|
| [182] |
P. Feng, J. He, S. Peng, et al., “Characterizations and Interfacial Reinforcement Mechanisms of Multicomponent Biopolymer Based Scaffold,” Materials Science & Engineering C-Materials For Biological Applications 100 (2019): 809-825.
|
| [183] |
L. L. Hench and H. A. Paschall, “Direct Chemical Bond of Bioactive Glass-ceramic Materials to Bone and Muscle,” Journal of Biomedial Materials Research 7 (1973): 25-42.
|
| [184] |
G. Piotrowski, L. L. Hench, W. C. Allen, and G. J. Miller, “Mechanical Studies of the Bone Bioglass Interfacial Bond,” Journal of Biomedial Materials Research 9 (1975): 47-61.
|
| [185] |
C. Huang, S. Shi, M. Qin, et al., “A Composite Hydrogel Functionalized by Borosilicate Bioactive Glasses and VEGF for Critical-Size Bone Regeneration,” Advanced Science (Weinh) (2024): e2400349.
|
| [186] |
C. Wu, Y. Ramaswamy, Y. Zhu, et al., “The Effect of Mesoporous Bioactive Glass on the Physiochemical, Biological and Drug-release Properties of Poly(DL-lactide-co-glycolide) Films,” Biomaterials 30 (2009): 2199-2208.
|
| [187] |
X. Yan, C. Yu, X. Zhou, J. Tang, and D. Zhao, “Highly Ordered Mesoporous Bioactive Glasses With Superior in Vitro Bone-forming Bioactivities,” Angewandte Chemie International Edition 43 (2004): 5980-5984.
|
| [188] |
D. Arcos and M. Vallet-Regí, “Sol-gel Silica-based Biomaterials and Bone Tissue Regeneration,” Acta Biomaterialia 6 (2010): 2874-2888.
|
| [189] |
S. Zhao, J. Zhang, M. Zhu, et al., “Three-dimensional Printed Strontium-containing Mesoporous Bioactive Glass Scaffolds for Repairing Rat Critical-sized Calvarial Defects,” Acta Biomaterialia 12 (2015): 270-280.
|
| [190] |
C. Zhang, Y.a Ren, W. Kong, et al., “Photocurable 3D-printed PMBG/TCP Biphasic Scaffold Mimicking Vasculature for Bone Regeneration,” International Journal of Bioprinting 9 (2023): 767.
|
| [191] |
Z. Min, Z. Shichang, X. Chen, Z. Yufang, and Z. Changqing, “3D-printed Dimethyloxallyl Glycine Delivery Scaffolds to Improve Angiogenesis and Osteogenesis,” Biomaterials Science 3 (2015): 1236-1244.
|
| [192] |
L. Shanmuganantha, M. U. Aslam Khan, A. B. Sulong, et al., “Characterization of Titanium Ceramic Composite for Bone Implants Applications,” Ceramics International 48 (2022): 22808-22819.
|
| [193] |
A. Sobolev, A. Valkov, A. Kossenko, I. Wolicki, M. Zinigrad, and K. Borodianskiy, “Bioactive Coating on Ti Alloy With High Osseointegration and Antibacterial Ag Nanoparticles,” ACS Applied Materials & Interfaces 11 (2019): 39534-39544.
|
| [194] |
J. S. Souer, D. Ring, S. Matschke, L. Audige, M. Maren-Hubert, and J. Jupiter, “Comparison of Functional Outcome After Volar Plate Fixation With 2.4-mm Titanium versus 3.5-mm Stainless-steel Plate for Extra-articular Fracture of Distal Radius,” Journal of Hand Surgery 35 (2010): 398-405.
|
| [195] |
M. S. Sakat, K. Kilic, E. Altas, M. S. Gozeler, and H. Ucuncu, “Comminuted Frontal Sinus Fracture Reconstructed with Titanium Mesh,” Journal of Craniofacial Surgery 27 (2016): e207-e208.
|
| [196] |
M. Mansoorianfar, A. Khataee, Z. Riahi, et al., “Scalable Fabrication of Tunable Titanium Nanotubes via Sonoelectrochemical Process for Biomedical Applications,” Ultrasonics Sonochemistry 64 (2020): 104783.
|
| [197] |
H. Zhao, S. Shen, L.u Zhao, Y. Xu, Y. Li, and N. Zhuo, “3D printing of Dual-cell Delivery Titanium Alloy Scaffolds for Improving Osseointegration Through Enhancing Angiogenesis and Osteogenesis,” BMC Musculoskeletal Disorders 22 (2021): 734.
|
| [198] |
Y. Zheng, Q. Han, J. Wang, D. Li, Z. Song, and J. Yu, “Promotion of Osseointegration Between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3D Printing,” ACS Biomaterials Science & Engineering 6 (2020): 5181-5190.
|
| [199] |
L. Ma, X. Wang, N. Zhao, et al., “Integrating 3D Printing and Biomimetic Mineralization for Personalized Enhanced Osteogenesis, Angiogenesis, and Osteointegration,” ACS Applied Materials & Interfaces 10 (2018): 42146-42154.
|
| [200] |
Z. Tang, X. Wei, T. Li, et al., “Three-Dimensionally Printed Ti2448 with Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis,” Frontiers in Cell and Developmental Biology 9 (2021): 750948.
|
| [201] |
Y. Li, Y. Liu, H. Bai, et al., “Sustained Release of VEGF to Promote Angiogenesis and Osteointegration of Three-Dimensional Printed Biomimetic Titanium Alloy Implants,” Frontiers in Bioengineering and Biotechnology 9 (2021): 757767.
|
| [202] |
H. Zhao, S. Shen, L.u Zhao, Y. Xu, Y. Li, and N. Zhuo, “3D printing of Dual-cell Delivery Titanium Alloy Scaffolds for Improving Osseointegration Through Enhancing Angiogenesis and Osteogenesis,” BMC Musculoskeletal Disorders 22 (2021): 734.
|
| [203] |
J. Li, X. Cui, G. C. J. Lindberg, et al., “Hybrid Fabrication of Photo-clickable Vascular Hydrogels With Additive Manufactured Titanium Implants for Enhanced Osseointegration and Vascularized Bone Formation,” Biofabrication 14 (2022): 034103.
|
| [204] |
K. Yue, G. Trujillo-De Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini, “Synthesis, Properties, and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels,” Biomaterials 73 (2015): 254-271.
|
| [205] |
P. Gentile, V. Chiono, I. Carmagnola, and P. Hatton, “An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-based Biomaterials for Bone Tissue Engineering,” International Journal of Molecular Sciences 15 (2014): 3640-3659.
|
| [206] |
J. Gu, “Construction of Nanofibrous Scaffolds With Interconnected Perfusable Microchannel Networks for Engineering of Vascularized Bone Tissue,” Bioactive Materials 6 (2021): 3254-3268.
|
| [207] |
C. Qin, H. Zhang, L. Chen, et al., “Cell-Laden Scaffolds for Vascular-Innervated Bone Regeneration,” Advanced Healthcare Materials 12 (2023): e2201923.
|
| [208] |
C. Wu, W. Fan, Y. Zhu, et al., “Multifunctional Magnetic Mesoporous Bioactive Glass Scaffolds With a Hierarchical Pore Structure,” Acta Biomaterialia 7 (2011): 3563-3572.
|
| [209] |
H. Begam, S. K. Nandi, B. Kundu, and A. Chanda, “Strategies for Delivering Bone Morphogenetic Protein for Bone Healing,” Materials Science & Engineering C-Materials For Biological Applications 70 (2017): 856-869.
|
| [210] |
A. R. Poynton and J. M. Lane, “Safety Profile for the Clinical Use of Bone Morphogenetic Proteins in the Spine,” Spine (Phila Pa 1976) 27 (2002): S40-S48.
|
| [211] |
D. Dolanmaz, “Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-κB Ligand and Osteoprotegerin Levels in the Peri-implant Sulcular Fluid During the Osseointegration of Hydrophilic-modified Sandblasted Acid-etched and Sandblasted Acid-etched Surface Dental Implants,” Journal of Periodontal Research 50 (2015): 62-73.
|
| [212] |
P. Tiyapatanaputi, P. T. Rubery, J. Carmouche, E. M. Schwarz, R. J. O'keefe, and X. Zhang, “A Novel Murine Segmental Femoral Graft Model,” Journal of Orthopaedic Research 22 (2004): 1254-1260.
|
| [213] |
Q. Wang, C. Huang, M. Xue, and X. Zhang, “Expression of Endogenous BMP-2 in Periosteal Progenitor Cells Is Essential for Bone Healing,” Bone 48 (2011): 524-532.
|
| [214] |
X. Zhang, H. A. Awad, R. J. O'keefe, R. E. Guldberg, and E. M. Schwarz, “A Perspective: Engineering Periosteum for Structural Bone Graft Healing,” Clinical Orthopaedics and Related Research 466 (2008): 1777-1787.
|
| [215] |
V. S. Salazar, L. W. Gamer, and V. Rosen, “BMP Signalling in Skeletal Development, Disease and Repair,” Nature Reviews Endocrinology 12 (2016): 203-221.
|
| [216] |
L. David, C. Mallet, S. Mazerbourg, J. J. Feige, and S. Bailly, “Identification of BMP9 and BMP10 as Functional Activators of the Orphan Activin Receptor-Like Kinase 1 (ALK1) in Endothelial Cells,” Blood 109 (2007): 1953-1961.
|
| [217] |
T. Rothhammer, F. Bataille, T. Spruss, G. Eissner, and A. K. Bosserhoff, “Functional Implication of BMP4 Expression on Angiogenesis in Malignant Melanoma,” Oncogene 26 (2007): 4158-4170.
|
| [218] |
M. Scharpfenecker, M. Van Dinther, Z. Liu, et al., “BMP-9 Signals via ALK1 and Inhibits bFGF-induced Endothelial Cell Proliferation and VEGF-stimulated Angiogenesis,” Journal of Cell Science 120 (2007): 964-972.
|
| [219] |
C. Hiepen, P. L. Mendez, and Knaus, “It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk With Mechanobiology,” Cells 9 (2020): 1965.
|
| [220] |
N. W. Morrell, D. B. Bloch, P. Ten Dijke, et al., “Targeting BMP Signalling in Cardiovascular Disease and Anaemia,” Nature Reviews Cardiology 13 (2016): 106-120.
|
| [221] |
V. L. Bautch, “Bone Morphogenetic Protein and Blood Vessels: New Insights Into Endothelial Cell Junction Regulation,” Current Opinion in Hematology 26 (2019): 154-160.
|
| [222] |
M. R. Kulikauskas, S. X, and V. L. Bautch, “The Versatility and Paradox of BMP Signaling in Endothelial Cell Behaviors and Blood Vessel Function,” Cellular and Molecular Life Sciences 79 (2022): 77.
|
| [223] |
J. Y. Park, J. H. Shim, S. A. Choi, et al., “3D printing Technology to Control BMP-2 and VEGF Delivery Spatially and Temporally to Promote Large-volume Bone Regeneration,” Journal of Materials Chemistry B 3 (2015): 5415-5425.
|
| [224] |
M. Ali, Y. He, A. S. N.i Chang, et al., “Osteoimmune-modulating and BMP-2-eluting Anodised 3D Printed Titanium for Accelerated Bone Regeneration,” Journal of Materials Chemistry B 12 (2023): 97-111.
|
| [225] |
U. Saran, S. Gemini Piperni, and S. Chatterjee, “Role of Angiogenesis in Bone Repair,” Archives of Biochemistry and Biophysics 561 (2014): 109-117.
|
| [226] |
M. T. Poldervaart, H. Gremmels, K. Van Deventer, et al., “Prolonged Presence of VEGF Promotes Vascularization in 3D Bioprinted Scaffolds With Defined Architecture,” Journal of Controlled Release 184 (2014): 58-66.
|
| [227] |
S. Chen, Y. Shi, X. Zhang, and J. Ma, “Evaluation of BMP-2 and VEGF Loaded 3D Printed Hydroxyapatite Composite Scaffolds With Enhanced Osteogenic Capacity in Vitro and in Vivo,” Materials Science & Engineering C-Materials For Biological Applications 112 (2020): 110893.
|
| [228] |
F. Fahimipour, M. Rasoulianboroujeni, E. Dashtimoghadam, et al., “3D printed TCP-based Scaffold Incorporating VEGF-loaded PLGA Microspheres for Craniofacial Tissue Engineering,” Dental Materials 33 (2017): 1205-1216.
|
| [229] |
E. Potier, E. Ferreira, S. Dennler, et al., “Desferrioxamine-driven Upregulation of Angiogenic Factor Expression by human Bone Marrow Stromal Cells,” Journal of Tissue Engineering and Regenerative Medicine 2 (2008): 272-278.
|
| [230] |
X. Shen, C. Wan, G. Ramaswamy, et al., “Prolyl Hydroxylase Inhibitors Increase Neoangiogenesis and Callus Formation Following Femur Fracture in Mice,” Journal of Orthopaedic Research 27 (2009): 1298-1305.
|
| [231] |
C. Wan, S. R. Gilbert, Y. Wang, et al., “Activation of the Hypoxia-inducible Factor-1alpha Pathway Accelerates Bone Regeneration,” Proceeding of the National Academy of Sciences of the United States of America 105 (2008): 686-691.
|
| [232] |
A. Donneys, D. M. Weiss, S. S. Deshpande, et al., “Localized Deferoxamine Injection Augments Vascularity and Improves Bony Union in Pathologic Fracture Healing After Radiotherapy,” Bone 52 (2013): 318-325.
|
| [233] |
M. Geng, Q. Zhang, J. Gu, et al., “Construction of a Nanofiber Network Within 3D Printed Scaffolds for Vascularized Bone Regeneration,” Biomaterials Science 9 (2021): 2631-2646.
|
| [234] |
J. Drager, J. L. Ramirez-Garcialuna, A. Kumar, U. Gbureck, E. J. Harvey, and J. E. Barralet, “(*) Hypoxia Biomimicry to Enhance Monetite Bone Defect Repair,” Tissue Engineering Part A 23 (2017): 1372-1381.
|
| [235] |
P. Chellan and P. J. Sadler, “The Elements of Life and Medicines,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373 (2015).
|
| [236] |
H. Rico, “Minerals and Osteoporosis,” Osteoporosis International 2 (1991): 20-25.
|
| [237] |
W. Opsahl, H. Zeronian, M. Ellison, D. Lewis, R. B. Rucker, and R. S. Riggins, “Role of Copper in Collagen Cross-linking and Its Influence on Selected Mechanical Properties of Chick Bone and Tendon,” Journal of Nutrition 112 (1982): 708-716.
|
| [238] |
J. Jonas, J. Burns, E. W. Abel, M. J. Cresswell, J. J. Strain, and C. R. Paterson, “Impaired Mechanical Strength of Bone in Experimental Copper Deficiency,” Annals of Nutrition & Metabolism 37 (1993): 245-252.
|
| [239] |
C. K. Sen, S. Khanna, M. Venojarvi, et al., “Copper-induced Vascular Endothelial Growth Factor Expression and Wound Healing,” American Journal of Physiology. Heart and Circulatory Physiology 282 (2002): H1821-H1827.
|
| [240] |
X. Gao and Z. Xu, “Mechanisms of Action of Angiogenin,” Acta Biochim Biophys Sin (Shanghai) 40 (2008): 619-624.
|
| [241] |
B. Li, Y. Li, Y. Wu, and Y. Zhao, “Synthesis of Water-soluble Cu/PAA Composite Flowers and Their Antibacterial Activities,” Materials Science & Engineering C-Materials For Biological Applications 35 (2014): 205-211.
|
| [242] |
T. Velnar, T. Bailey, and V. Smrkolj, “The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms,” Journal of International Medical Research 37 (2009): 1528-1542.
|
| [243] |
W. Dang, B. Ma, B.o Li, et al., “3D printing of Metal-organic Framework Nanosheets-structured Scaffolds With Tumor Therapy and Bone Construction,” Biofabrication 12 (2020): 025005.
|
| [244] |
C. Wu, Y. Zhou, M. Xu, et al., “Copper-containing Mesoporous Bioactive Glass Scaffolds With Multifunctional Properties of Angiogenesis Capacity, Osteostimulation and Antibacterial Activity,” Biomaterials 34 (2013): 422-433.
|
| [245] |
Q. Dai, Q. Li, H. Gao, et al., “3D printing of Cu-doped Bioactive Glass Composite Scaffolds Promotes Bone Regeneration Through Activating the HIF-1α and TNF-α Pathway of hUVECs,” Biomaterials Science 9 (2021): 5519-5532.
|
| [246] |
J. M. Díaz-Tocados, C. Herencia, J. M. Martínez-Moreno, et al., “Magnesium Chloride Promotes Osteogenesis Through Notch Signaling Activation and Expansion of Mesenchymal Stem Cells,” Scientific Reports 7 (2017): 7839.
|
| [247] |
M. Bessa-Gonçalves, C. Ribeiro-Machado, M. Costa, et al., “Magnesium Incorporation in Fibrinogen Scaffolds Promotes Macrophage Polarization towards M2 Phenotype,” Acta Biomaterialia 155 (2023): 667-683.
|
| [248] |
S. Lin, G. Yang, F. Jiang, et al., “A Magnesium-Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration,” Advanced Science (Weinh) 6 (2019): 1900209.
|
| [249] |
S. Swetha, K. Balagangadharan, K. Lavanya, and N. Selvamurugan, “Three-dimensional-poly(lactic acid) Scaffolds Coated With Gelatin/Magnesium-doped Nano-hydroxyapatite for Bone Tissue Engineering,” Biotechnology Journal 16 (2021): e2100282.
|
| [250] |
D. Ke, S. Tarafder, S. Vahabzadeh, and S. Bose, “Effects of MgO, ZnO, SrO, and SiO(2) in Tricalcium Phosphate Scaffolds on in Vitro Gene Expression and in Vivo Osteogenesis,” Materials Science & Engineering C-Materials For Biological Applications 96 (2019): 10-19.
|
| [251] |
F. He, X. Yuan, T. Lu, et al., “Preparation and Characterization of Novel Lithium Magnesium Phosphate Bioceramic Scaffolds Facilitating Bone Generation,” Journal of Materials Chemistry B 10 (2022): 4040-4047.
|
| [252] |
D. Qi, J. Su, S. Li, et al., “3D printed Magnesium-doped β-TCP Gyroid Scaffold With Osteogenesis, Angiogenesis, Immunomodulation Properties and Bone Regeneration Capability in Vivo,” Biomaterials Advances 136 (2022): 212759.
|
| [253] |
F. H. Nielsen, “Update on the Possible Nutritional Importance of Silicon,” Journal of Trace Elements in Medicine and Biology 28 (2014): 379-382.
|
| [254] |
R. Jugdaohsingh, K. L. Tucker, N. Qiao, L. A. Cupples, D. P. Kiel, and J. J. Powell, “Dietary Silicon Intake Is Positively Associated With Bone Mineral Density in Men and Premenopausal Women of the Framingham Offspring Cohort,” Journal of Bone and Mineral Research 19 (2004): 297-307.
|
| [255] |
R. Jugdaohsingh, K. Kessler, B. Messner, et al., “Dietary Silicon Deficiency Does Not Exacerbate Diet-Induced Fatty Lesions in Female ApoE Knockout Mice,” Journal of Nutrition 145 (2015): 1498-1506.
|
| [256] |
P. Han, C. Wu, and Y. Xiao, “The Effect of Silicate Ions on Proliferation, Osteogenic Differentiation and Cell Signalling Pathways (WNT and SHH) of Bone Marrow Stromal Cells,” Biomaterials Science 1 (2013): 379-392.
|
| [257] |
M. Y. Shie and S. J. Ding, “Integrin Binding and MAPK Signal Pathways in Primary Cell Responses to Surface Chemistry of Calcium Silicate Cements,” Biomaterials 34 (2013): 6589-6606.
|
| [258] |
S. Bose, G. Fielding, S. Tarafder, and A. Bandyopadhyay, “Understanding of Dopant-induced Osteogenesis and Angiogenesis in Calcium Phosphate Ceramics,” Trends in Biotechnology 31 (2013): 594-605.
|
| [259] |
X. Zhou, N. Zhang, S. Mankoci, and N. Sahai, “Silicates in Orthopedics and Bone Tissue Engineering Materials,” Journal of Biomedical Materials Research. Part A 105 (2017): 2090-2102.
|
| [260] |
G. R. Beck, S. W. Ha, C. E. Camalier, et al., “Bioactive Silica-based Nanoparticles Stimulate Bone-forming Osteoblasts, Suppress Bone-resorbing Osteoclasts, and Enhance Bone Mineral Density in Vivo,” Nanomedicine 8 (2012): 793-803.
|
| [261] |
H. Li, K.e Xue, N.i Kong, K. Liu, and J. Chang, “Silicate Bioceramics Enhanced Vascularization and Osteogenesis Through Stimulating Interactions Between Endothelia Cells and Bone Marrow Stromal Cells,” Biomaterials 35 (2014): 3803-3818.
|
| [262] |
L. Mao, L. Xia, J. Chang, et al., “The Synergistic Effects of Sr and Si Bioactive Ions on Osteogenesis, Osteoclastogenesis and Angiogenesis for Osteoporotic Bone Regeneration,” Acta Biomaterialia 61 (2017): 217-232.
|
| [263] |
R. Baron and Y. Tsouderos, “In Vitro Effects of S12911-2 on Osteoclast Function and Bone Marrow Macrophage Differentiation,” European Journal of Pharmacology 450 (2002): 11-17.
|
| [264] |
N. Takahashi, T. Sasaki, Y. Tsouderos, and T. Suda, “S 12911-2 Inhibits Osteoclastic Bone Resorption in Vitro,” Journal of Bone and Mineral Research 18 (2003): 1082-1087.
|
| [265] |
O. Fromigué, E. Haÿ, A. Barbara, et al., “Calcium Sensing Receptor-dependent and Receptor-independent Activation of Osteoblast Replication and Survival by Strontium Ranelate,” Journal of Cellular and Molecular Medicine 13 (2009): 2189-2199.
|
| [266] |
G. J. Atkins, K. J. Welldon, P. Halbout, and D. M. Findlay, “Strontium Ranelate Treatment of human Primary Osteoblasts Promotes an Osteocyte-Like Phenotype While Eliciting an Osteoprotegerin Response,” Osteoporosis International 20 (2009): 653-664.
|
| [267] |
H. Gerber, “Angiogenesis and Bone Growth,” Trends in Cardiovascular Medicine 10 (2000): 223-228.
|
| [268] |
M. Tohidnezhad, Y. Kubo, P. Lichte, et al., “Effects of Strontium-Doped β-Tricalcium Scaffold on Longitudinal Nuclear Factor-Kappa Beta and Vascular Endothelial Growth Factor Receptor-2 Promoter Activities During healing in a Murine Critical-Size Bone Defect Model,” International Journal of Molecular Sciences 21 (2020): 3208.
|
| [269] |
C. Y. Chen, C. C. Chen, C. Y. Wang, A. K. X. Lee, C. L. Yeh, and C. P. Lin, “Assessment of the Release of Vascular Endothelial Growth Factor From 3D-Printed Poly-ε-Caprolactone/Hydroxyapatite/Calcium Sulfate Scaffold With Enhanced Osteogenic Capacity,” Polymers (Basel) 12 (2020): 1455.
|
| [270] |
Y. Yan, H. Chen, H. Zhang, et al., “Vascularized 3D Printed Scaffolds for Promoting Bone Regeneration,” Biomaterials 190-191 (2019): 97-110.
|
| [271] |
H. Y. Wu, Y. H. Lin, A. K. X. Lee, T. Y. Kuo, C. H. Tsai, and M. Y. Shie, “Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration,” Cells 11 (2022): 2824.
|
| [272] |
Y. Gu, J. Zhang, X. Zhang, G. Liang, T. Xu, and W. Niu, “Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis in Vitro,” Tissue Engineering and Regenerative Medicine 16 (2019): 415-429.
|
| [273] |
Y. Yuan, Y. Xu, Y. Mao, et al., “Three Birds, One Stone: An Osteo-Microenvironment Stage-Regulative Scaffold for Bone Defect Repair Through Modulating Early Osteo-Immunomodulation, Middle Neovascularization, and Later Osteogenesis,” Advanced Science (Weinh) 11 (2024): e2306428.
|
| [274] |
G. Li, Y. Li, X. Zhang, et al., “Strontium and Simvastatin Dual Loaded Hydroxyapatite Microsphere Reinforced Poly(ε-caprolactone) Scaffolds Promote Vascularized Bone Regeneration,” Journal of Materials Chemistry B 11 (2023): 1115-1130.
|
| [275] |
H. Liu, R. Gu, W. Li, et al., “Engineering 3D-Printed Strontium-Titanium Scaffold-Integrated Highly Bioactive Serum Exosomes for Critical Bone Defects by Osteogenesis and Angiogenesis,” ACS Applied Materials & Interfaces 15 (2023): 27486-27501.
|
| [276] |
J. Filipowska, K. A. Tomaszewski, Ł. Niedźwiedzki, J. A. Walocha, and T. Niedźwiedzki, “The Role of Vasculature in Bone Development, Regeneration and Proper Systemic Functioning,” Angiogenesis 20 (2017): 291-302.
|
| [277] |
F. Simunovic and G. Finkenzeller, “Vascularization Strategies in Bone Tissue Engineering,” Cells 10 (2021): 1749.
|
| [278] |
J. Huang, Q. Han, M. Cai, et al., “Effect of Angiogenesis in Bone Tissue Engineering,” Annals of Biomedical Engineering 50 (2022): 898-913.
|
| [279] |
M. Bahraminasab, “Challenges on Optimization of 3D-printed Bone Scaffolds,” Biomedical Engineering Online 19 (2020): 69.
|
| [280] |
M. Umar Aslam Khan, S. Haider, A. Haider, et al., “Development of Porous, Antibacterial and Biocompatible GO/n-HAp/Bacterial Cellulose/β-glucan Biocomposite Scaffold for Bone Tissue Engineering,” Arabian Journal of Chemistry 14 (2021): 102924.
|
| [281] |
M. U. Aslam Khan, H. Mehboob, S. I. Abd Razak, et al., “Development of Polymeric Nanocomposite (Xyloglucan-co-Methacrylic Acid/Hydroxyapatite/SiO(2)) Scaffold for Bone Tissue Engineering Applications-In-Vitro Antibacterial, Cytotoxicity and Cell Culture Evaluation,” Polymers (Basel) 12 (2020): 1238.
|
| [282] |
P. Xia and Y. Luo, “Vascularization in Tissue Engineering: The Architecture Cues of Pores in Scaffolds,” Journal of Biomedical Materials Research. Part B, Applied Biomaterials 110 (2022): 1206-1214.
|
| [283] |
H. Fan, X. Zeng, X. Wang, R. Zhu, and G. Pei, “Efficacy of Prevascularization for Segmental Bone Defect Repair Using β-tricalcium Phosphate Scaffold in rhesus Monkey,” Biomaterials 35 (2014): 7407-7415.
|
| [284] |
J. R. García and A. J. García, “Biomaterial-mediated Strategies Targeting Vascularization for Bone Repair,” Drug Delivery and Translational Research 6 (2016): 77-95.
|
| [285] |
X. Zheng, L. Xin, Y. Luo, et al., “Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes,” ACS Applied Materials & Interfaces 11 (2019): 43689-43697.
|
| [286] |
A. Entezari, I. Roohani, G. Li, et al., “Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone,” Advanced Healthcare Materials 8 (2019): e1801353.
|
| [287] |
K. F. Eichholz, F. E. Freeman, P. Pitacco, et al., “Scaffold Microarchitecture Regulates Angiogenesis and the Regeneration of Large Bone Defects,” Biofabrication 14 (2022): 045013.
|
| [288] |
Y. Li, et al., “The Design of Strut/TPMS-based Pore Geometries in Bioceramic Scaffolds Guiding Osteogenesis and Angiogenesis in Bone Regeneration,” Materials Today Bio 20 (2023): 100667.
|
| [289] |
H. Zhang, M. Zhang, D. Zhai, et al., “Polyhedron-Like Biomaterials for Innervated and Vascularized Bone Regeneration,” Advanced Materials 35 (2023): e2302716.
|
| [290] |
Z. Lu, S. I. Roohani-Esfahani, J. Li, and H. Zreiqat, “Synergistic Effect of Nanomaterials and BMP-2 Signalling in Inducing Osteogenic Differentiation of Adipose Tissue-derived Mesenchymal Stem Cells,” Nanomedicine 11 (2015): 219-228.
|
| [291] |
Z. Yang, J. Xue, T. Li, et al., “3D printing of Sponge Spicules-inspired Flexible Bioceramic-based Scaffolds,” Biofabrication 14 (2022): 035009.
|
| [292] |
M. Zhang, R. Lin, X. Wang, et al., “3D printing of Haversian Bone-mimicking Scaffolds for Multicellular Delivery in Bone Regeneration,” Science Advances 6 (2020): eaaz6725.
|
| [293] |
L. Xia, K. Lin, X. Jiang, et al., “Effect of Nano-structured Bioceramic Surface on Osteogenic Differentiation of Adipose Derived Stem Cells,” Biomaterials 35 (2014): 8514-8527.
|
| [294] |
C. Deng, R. Lin, M. Zhang, et al., “Micro/Nanometer-Structured Scaffolds for Regeneration of both Cartilage and Subchondral Bone,” Advanced Functional Materials 29 (2019): 1806068.
|
| [295] |
M. I. Santos and R. L. Reis, “Vascularization in Bone Tissue Engineering: Physiology, Current Strategies, Major Hurdles and Future Challenges,” Macromolecular Bioscience 10 (2010): 12-27.
|
| [296] |
J. Rouwkema, N. C. Rivron, and C. A. van Blitterswijk, “Vascularization in Tissue Engineering,” Trends in Biotechnology 26 (2008): 434-441.
|
| [297] |
E. C. Novosel, C. Kleinhans, and P. J. Kluger, “Vascularization Is the Key Challenge in Tissue Engineering,” Advanced Drug Delivery Reviews 63 (2011): 300-311.
|
| [298] |
T. Li, J. Chang, Y. Zhu, and C. Wu, “3D Printing of Bioinspired Biomaterials for Tissue Regeneration,” Advanced Healthcare Materials 9 (2020): e2000208.
|
| [299] |
S. Reed, G. Lau, B. Delattre, D. D. Lopez, A. P. Tomsia, and B. M. Wu, “Macro- and Micro-designed Chitosan-alginate Scaffold Architecture by Three-dimensional Printing and Directional Freezing,” Biofabrication 8 (2016): 015003.
|
| [300] |
L. S. Wray, J. Rnjak-Kovacina, B. B. Mandal, D. F. Schmidt, E. S. Gil, and D. L. Kaplan, “A Silk-based Scaffold Platform With Tunable Architecture for Engineering Critically-sized Tissue Constructs,” Biomaterials 33 (2012): 9214-9224.
|
| [301] |
J. Rnjak-Kovacina, L. S. Wray, J. M. Golinski, and D. L. Kaplan, “Arrayed Hollow Channels in Silk-based Scaffolds Provide Functional Outcomes for Engineering Critically-sized Tissue Constructs,” Advanced Functional Materials 24 (2014): 2188-2196.
|
| [302] |
C. Feng, W. Zhang, C. Deng, et al., “3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration,” Advanced Science (Weinh) 4 (2017): 1700401.
|
| [303] |
J. Zhang, S. Suttapreyasri, C. Leethanakul, and B. Samruajbenjakun, “Fabrication of Vascularized Tissue-engineered Bone Models Using Triaxial Bioprinting,” Journal of Biomedical Materials Research. Part A 112 (2024): 1093-1106.
|
| [304] |
M. A. Fernandez-Yague, S. A. Abbah, L. Mcnamara, D. I. Zeugolis, A. Pandit, and M. J. Biggs, “Biomimetic Approaches in Bone Tissue Engineering: Integrating Biological and Physicomechanical Strategies,” Advanced Drug Delivery Reviews 84 (2015): 1-29.
|
| [305] |
M. Hippler, E. D. Lemma, S. Bertels, et al., “3D Scaffolds to Study Basic Cell Biology,” Advanced Materials 31 (2019): e1808110.
|
| [306] |
B. Byambaa, N. Annabi, K. Yue, et al., “Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue,” Advanced Healthcare Materials 6 (2017).
|
| [307] |
X. Sun, X. Jiao, X. Yang, et al., “3D bioprinting of Osteon-mimetic Scaffolds With Hierarchical Microchannels for Vascularized Bone Tissue Regeneration,” Biofabrication 14 (2022): 035008.
|
| [308] |
L. Guariguata, D. R. Whiting, I. Hambleton, J. Beagley, U. Linnenkamp, and J. E. Shaw, “Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035,” Diabetes Research and Clinical Practice 103 (2014): 137-149.
|
| [309] |
A. K. Picke, G. Campbell, N. Napoli, L. C. Hofbauer, and M. Rauner, “Update on the Impact of Type 2 Diabetes Mellitus on Bone Metabolism and Material Properties,” Endocrine Connections 8 (2019): R55-R70.
|
| [310] |
A. Sharma, J. S. Y. Choi, N. Stefanovic, et al., “Specific NLRP3 Inhibition Protects against Diabetes-Associated Atherosclerosis,” Diabetes 70 (2021): 772-787.
|
| [311] |
P. G. F. P. De Oliveira, E. A. Bonfante, E. T. P. Bergamo, et al., “Obesity/Metabolic Syndrome and Diabetes Mellitus on Peri-implantitis,” Trends in Endocrinology and Metabolism 31 (2020): 596-610.
|
| [312] |
P. S. Hinton, K. Shankar, L. M. Eaton, and R. Scott Rector, “Obesity-related Changes in Bone Structural and Material Properties in Hyperphagic OLETF Rats and Protection by Voluntary Wheel Running,” Metabolism 64 (2015): 905-916.
|
| [313] |
H. Sábado-Bundó, M. Sánchez-Garcés, and C. Gay-Escoda, “Bone Regeneration in Diabetic Patients. A Systematic Review,” Medicina Oral, Patologia Oral, Cirugia Bucal 24 (2019): e425-e432.
|
| [314] |
S. C. Tao, X. R. Li, W. J. Wei, et al., “Polymeric Coating on β-TCP Scaffolds Provides Immobilization of Small Extracellular Vesicles With Surface-functionalization and ZEB1-Loading for Bone Defect Repair in Diabetes Mellitus,” Biomaterials 283 (2022): 121465.
|
| [315] |
Z. Xu, “Biomineralization Inspired 3D Printed Bioactive Glass Nanocomposite Scaffolds Orchestrate Diabetic Bone Regeneration by Remodeling Micromilieu,” Bioactive Materials 25 (2023): 239-255.
|
| [316] |
T. Chen, Z. Wu, Q. Hou, et al., “The Dual Angiogenesis Effects via Nrf2/HO-1 Signaling Pathway of Melatonin Nanocomposite Scaffold on Promoting Diabetic Bone Defect Repair,” International Journal of Nanomedicine 19 (2024): 2709-2732.
|
| [317] |
M. Wu, H. Liu, Y. Zhu, et al., “Bioinspired Soft-hard Combined System With Mild Photothermal Therapeutic Activity Promotes Diabetic Bone Defect Healing via Synergetic Effects of Immune Activation and Angiogenesis,” Theranostics 14 (2024): 4014-4057.
|
| [318] |
A. A. Al-Omari, A. J. Aleshawi, O. A. Marei, et al., “Avascular Necrosis of the Femoral Head After Single Steroid Intra-articular Injection,” European Journal of Orthopaedic Surgery & Traumatology 30 (2020): 193-197.
|
| [319] |
D. Zhao, F. Zhang, B. Wang, et al., “Guidelines for Clinical Diagnosis and Treatment of Osteonecrosis of the Femoral Head in Adults (2019 version),” Journal of Orthopaedic Translation 21 (2020): 100-110.
|
| [320] |
Y. Chen, Y.u Miao, K. Liu, et al., “Evolutionary Course of the Femoral Head Osteonecrosis: Histopathological—radiologic Characteristics and Clinical Staging Systems,” Journal of Orthopaedic Translation 32 (2022): 28-40.
|
| [321] |
A. Cohen-Rosenblum and Q. Cui, “Osteonecrosis of the Femoral Head,” Orthopedic Clinics of North America 50 (2019): 139-149.
|
| [322] |
Y. Lai, H. Cao, X. Wang, et al., “Porous Composite Scaffold Incorporating Osteogenic Phytomolecule Icariin for Promoting Skeletal Regeneration in Challenging Osteonecrotic Bone in Rabbits,” Biomaterials 153 (2018): 1-13.
|
| [323] |
F. Li, Z. Cao, K. Li, et al., “Cryogenic 3D Printing of Ss-TCP/PLGA Composite Scaffolds Incorporated with BpV (Pic) for Treating Early Avascular Necrosis of Femoral Head,” Frontiers in Bioengineering and Biotechnology 9 (2021): 748151.
|
| [324] |
M. Tsubosaka, M. Maruyama, E. Lui, et al., “The Efficiency of Genetically Modified Mesenchymal Stromal Cells Combined With a Functionally Graded Scaffold for Bone Regeneration in Corticosteroid-induced Osteonecrosis of the Femoral Head in Rabbits,” Journal of Biomedical Materials Research. Part A 111 (2023): 1120-1134.
|
| [325] |
J. A. Morris, J. P. Kemp, S. E. Youlten, et al., “An Atlas of Genetic Influences on Osteoporosis in Humans and Mice,” Nature Genetics 51 (2019): 258-266.
|
| [326] |
J. E. Compston, M. R. McClung, and W. D. Leslie, “Osteoporosis,” Lancet 393 (2019): 364-376.
|
| [327] |
J. S. Kimball, J. P. Johnson, and D. A. Carlson, “Oxidative Stress and Osteoporosis,” Journal of Bone and Joint Surgery American Volume 103 (2021): 1451-1461.
|
| [328] |
L. Wang, W. Yu, X. Yin, et al., “Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study,” JAMA Network Open 4 (2021): e2121106.
|
| [329] |
C. Yan, P. Zhang, Q. Qin, et al., “3D-printed Bone Regeneration Scaffolds Modulate Bone Metabolic Homeostasis through Vascularization for Osteoporotic Bone Defects,” Biomaterials 311 (2024): 122699.
|
| [330] |
Q. Miao, N. Jiang, Q. Yang, et al., “Multi-stage Controllable Degradation of Strontium-doped Calcium Sulfate Hemihydrate-tricalcium Phosphate Microsphere Composite as a Substitute for Osteoporotic Bone Defect Repairing: Degradation Behavior and Bone Response,” Biomedical Materials 17 (2021): 015014.
|
| [331] |
J. Wang, R. Chen, B. Ren, et al., “A Novel PTH-Related Peptide Combined With 3D Printed Macroporous Titanium Alloy Scaffold Enhances Osteoporotic Osseointegration,” Advanced Healthcare Materials 12 (2023): e2301604.
|
| [332] |
Y. Lou, H. Wang, G. Ye, et al., “Periosteal Tissue Engineering: Current Developments and Perspectives,” Advanced Healthcare Materials 10 (2021): e2100215.
|
| [333] |
S. Ghanmi, M. Trigui, W. Baya, et al., “The Periosteum-Like Effect of Fresh human Amniotic Membrane on Bone Regeneration in a Rabbit Critical-sized Defect Model,” Bone 110 (2018): 392-404.
|
| [334] |
A. Salhotra, H. N. Shah, B. Levi, and M. T. Longaker, “Mechanisms of Bone Development and Repair,” Nature Reviews Molecular Cell Biology 21 (2020): 696-711.
|
| [335] |
M. Caballero, A. K. Pappa, K. S. Roden, D. J. Krochmal, and J. A. Van Aalst, “Osteoinduction of Umbilical Cord and Palate Periosteum-derived Mesenchymal Stem Cells on Poly(lactic-co-glycolic) Acid Nanomicrofibers,” Annals of Plastic Surgery 72 (2014): S176-S183.
|
| [336] |
C. Liu, Y. Lou, Z. Sun, et al., “4D Printing of Personalized-Tunable Biomimetic Periosteum with Anisotropic Microstructure for Accelerated Vascularization and Bone Healing,” Advanced Healthcare Materials 12 (2023): e2202868.
|
| [337] |
M. Kansara, M. W. Teng, M. J. Smyth, and D. M. Thomas, “Translational Biology of Osteosarcoma,” Nature Reviews Cancer 14 (2014): 722-735.
|
| [338] |
K. Zhang, Y. Zhou, C. Xiao, et al., “Application of Hydroxyapatite Nanoparticles in Tumor-associated Bone Segmental Defect,” Science Advances 5 (2019): eaax6946.
|
| [339] |
R. J. Grimer, “Surgical Options for Children with Osteosarcoma,” The Lancet Oncology 6 (2005): 85-92.
|
| [340] |
B. Wang, J. Yu, L. Sui, et al., “Rational Design of Multi-Color-Emissive Carbon Dots in a Single Reaction System by Hydrothermal,” Advanced Science (Weinh) 8 (2020): 2001453.
|
| [341] |
M. U. A. Khan, W. S. Al-Arjan, N. Ashammakhi, S. Haider, R. Amin, and A. Hasan, “Multifunctional Bioactive Scaffolds from ARX-g-(Zn@rGO)-HAp for Bone Tissue Engineering: In Vitro Antibacterial, Antitumor, and Biocompatibility Evaluations,” ACS Applied Bio Materials 5 (2022): 5445-5456.
|
| [342] |
J. Yin, “Nb(2)C MXene-Functionalized Scaffolds Enables Osteosarcoma Phototherapy and Angiogenesis/Osteogenesis of Bone Defects,” Nanomicro Letters 13 (2021): 30.
|
| [343] |
Q. Yang, H. Yin, T. Xu, et al., “Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration,” Small 16 (2020): e1906814.
|
| [344] |
C. Yang, H. Ma, Z. Wang, et al., “3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration,” Advanced Science (Weinh) 8 (2021): e2100894.
|
| [345] |
C. Xu, Y. Xia, P. Zhuang, et al., “FePSe(3) -Nanosheets-Integrated Cryogenic-3D-Printed Multifunctional Calcium Phosphate Scaffolds for Synergistic Therapy of Osteosarcoma,” Small 19 (2023): e2303636.
|
| [346] |
Y. Zhang, J. Xu, Y. C. Ruan, et al., “Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats,” Nature Medecine 22 (2016), 1160-1169.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.