Engineering “Meso-Atom” Bonding: Honeycomb-Network Transitions in Reticular Liquid Crystals

Christian Anders , Tianyi Tan , Virginia-Marie Fischer , Ruoyu Wang , Mohamed Alaasar , Rebecca Waldecker , Yu Cao , Feng Liu , Carsten Tschierske

Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e728

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (4) : e728 DOI: 10.1002/agt2.728
RESEARCH ARTICLE

Engineering “Meso-Atom” Bonding: Honeycomb-Network Transitions in Reticular Liquid Crystals

Author information +
History +
PDF

Abstract

A library of rod-like bolapolyphiles with sticky hydrogen-bonded glycerol groups at their ends and having highly branched side chains with a carbosilane-based four-way branching point, all based on the same oligo(phenylene ethynylene) core, has been synthesized and investigated. For these compounds, a A15-type Frank–Kasper phase is formed upon side-chain elongation in the steric frustration range at the transition from the triangular to the much larger square honeycombs. In contrast to the previously known tetrahedral sphere packings the A15 phase is in this case formed by tetrahedral networks of aggregates of parallelly organized π-conjugated rods. This allows the design of compounds with wide ranges of the A15 network down to room temperature. However, its formation becomes strongly disfavored by core fluorination that is attributed to a changing mode of core–core interaction that also modifies the square honeycombs by deformation of the squares into rectangular or rhombic cells, either with or without emergence of tilt of the rods.

Cite this article

Download citation ▾
Christian Anders, Tianyi Tan, Virginia-Marie Fischer, Ruoyu Wang, Mohamed Alaasar, Rebecca Waldecker, Yu Cao, Feng Liu, Carsten Tschierske. Engineering “Meso-Atom” Bonding: Honeycomb-Network Transitions in Reticular Liquid Crystals. Aggregate, 2025, 6(4): e728 DOI:10.1002/agt2.728

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Kumar and S. Kumar, “Liquid Crystals in Photovoltaics: A New Generation of Organic Photovoltaics,” Polymer Journal 49 (2017): 85.

[2]

Y. Hong, J. W. Y. Lam, and B. Z. Tang, “Aggregation-Induced Emission,” Chemical Society Reviews 40 (2011): 5361.

[3]

L. H. Y. Liu, F. X. Lin, K. Fu, et al., “Highly Efficient Luminescent Liquid Crystal With Aggregation-Induced Energy Transfer,” ACS Applied Materials & Interfaces 11 (2019): 3516.

[4]

Y. Wu, M. Li, Z. G. Zheng, Z. Q. Yu, and W. H. Zhu, “Liquid Crystal Assembly for Ultra-Dissymmetric Circularly Polarized Luminescence and Beyond,” Journal of the American Chemical Society 145 (2023): 12951.

[5]

Z. L. Gong, X. Zhu, Z. Zhou, et al., “Frontiers in Circularly Polarized Luminescence: Molecular Design, Self-Assembly, Nanomaterials, and Applications,” Science China Chemistry 64 (2021): 2060.

[6]

J. Liu, Y. Molard, M. E. Prévot, and T. Hegmann, “Highly Tunable Circularly Polarized Emission of an Aggregation-Induced Emission Dye Using Helical Nano- and Microfilaments as Supramolecular Chiral Templates,” ACS Applied Materials & Interfaces 14 (2022): 2939.

[7]

Y. X. Hu, W. J. Li, P. P. Jia, X. Q. Wang, L. Xu, and H. B. Yang, “Supramolecular Artificial Light-Harvesting Systems with Aggregation-Induced Emission,” Advanced Optical Materials 8 (2020): 2000265.

[8]

M. R. Wasielewski, “Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems,” Accounts of Chemical Research 42 (2009): 1910-1921.

[9]

J. W. Goodby, J. P. Collings, T. Kato, and C. Tschierske, H. F. Gleeson, P. Raynes, eds., Handbook of Liquid Crystals (Weinheim: Wiley-VCH, 2014).

[10]

P. J. Collings and J. W. Goodby, Introduction to Liquid Crystals: Chemistry and Physics (Boca Raton, FL: CRC Press, 2019).

[11]

E.-K. Fleischmann and R. Zentel, “Liquid-Crystalline Ordering as a Concept in Materials Science: From Semiconductors to Stimuli-Responsive Devices,” Angewandte Chemie International Edition 52 (2013): 8810.

[12]

H. K. Bisoyi and Q. Li, “Liquid Crystals: Versatile Self-Organized Smart Soft Materials,” Chemical Reviews 122 (2022): 4887.

[13]

N. Koide, ed., The Liquid Crystal Display Story (Tokyo: Springer, 2014).

[14]

R. Iwai, H. Yoshida, Y. Arakawa, et al., “Near-Room-Temperature π-Conjugated Nematic Liquid Crystals in Molecules with a Flexible Seven-Membered Ring Structure,” Aggregate (2024): e660, https://doi.org/10.1002/agt2.660.

[15]

J. Uchida, B. Soberats, M. Gupta, and T. Kato, “Advanced Functional Liquid Crystals,” Advanced Materials 34 (2022): 2109063.

[16]

C. Tschierske, “Development of Structural Complexity by Liquid-Crystal Self-Assembly,” Angewandte Chemie International Edition 52 (2013): 8828.

[17]

C. Tschierske, “Liquid Crystal Engineering—New Complex Mesophase Structures and Their Relations to Polymer Morphologies, Nanoscale Patterning and Crystal Engineering,” Chemical Society Reviews 36 (2007): 1930.

[18]

C. Tschierske, C. Nürnberger, H. Ebert, et al., “Complex Tiling Patterns in Liquid Crystals,” Interface Focus 2 (2012): 669.

[19]

Z. He, X. Wang, P. Zhang, A. C. Shi, and K. Jiang, “Theory of Polygonal Phases Self-Assembled From T-Shaped Liquid Crystalline Molecules,” Macromolecules 57 (2024): 2154.

[20]

R. M. Fuoss and D. Edelson, “Bolaform Electrolytes. I. Di-(β-Trimethylammonium Ethyl) Succinate Dibromide and Related Compounds,” Journal of the American Chemical Society 73 (1951): 269.

[21]

G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Berlin: Springer, 1994).

[22]

E. G. Atovmyan, S. V. Koshchii, and T. N. Fedotova, “Investigation of Hydrogen Bonds in Alkyl Glycerol Ethers,” Journal of Applied Spectroscopy 48 (1988): 202.

[23]

J. S. Lomas, “Cooperativity in Alkane-1,2- and 1,3-Polyols: NMR, QTAIM, and IQA Study of O─H⋯OH and C─H⋯OH Bonding Interactions,” Magnetic Resonance in Chemistry 58 (2020): 666.

[24]

C. P. Brock, “Crystal Packing in Vicinal Diols CnHm(OH)2,” Acta Crystallographica Section B 58 (2002): 1025.

[25]

R. Chelakkot, R. Lipowsky, and T. Gruhn, “Novel Low-Density Structure for Hard Rods with Adhesive End Groups,” Macromolecules 39 (2006): 7138.

[26]

T. D. Nguyen and S. C. Glotzer, “Reconfigurable Assemblies of Shape-Changing Nanorods,” ACS Nano 4 (2010): 2585.

[27]

S. Poppe, M. Poppe, H. Ebert, et al., “Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(Phenylene Ethynylene) Cores on Self-Assembly Behaviour. Part 1: Transition Between Amphiphilic and Polyphilic Self-Assembly in the Bulk,” Polymers 9 (2017): 471.

[28]

R. Kieffer, M. Prehm, B. Glettner, et al., “X-Shaped Polyphilics: Liquid Crystal Honeycombs With Single-Molecule Walls,” Chemical Communications (2008): 3861.

[29]

A. Saeed, M. Poppe, M. B. Wagner, et al., “The Rhombic Honeycomb—A New Mode of Self-Assembly in Liquid Crystalline Soft Matter,” Chemical Communications 58 (2022): 7054.

[30]

M. Poppe, C. Chen, S. Poppe, C. Kerzig, F. Liu, and C. T. schiersk, “Different Modes of Deformation of Soft Triangular Honeycombs at the Sub-5 nm Scale,” Advanced Materials 32 (2020): 2005070.

[31]

B. Glettner, F. Liu, X. Zeng, et al., “Liquid-Crystalline Kagome,” Angewandte Chemie International Edition 47 (2008): 9063.

[32]

M. Poppe, C. Chen, S. Poppe, F. Liu, and C. Tschierske, “A Periodic Dodecagonal Supertiling by Self-Assembly of Star-Shaped Molecules in the Liquid Crystalline State,” Communications Chemistry 3 (2020): 70.

[33]

X. Cai, S. Hauche, S. Poppe, et al., “Network Phases With Multiple-Junction Geometries at the Gyroid-Diamond Transition,” Journal of the American Chemical Society 145 (2023): 1000.

[34]

X. Zeng, S. Poppe, A. Lehmann, et al., “A Self-Assembled Bicontinuous Cubic Phase With a Single-Diamond Network,” Angewandte Chemie International Edition 58 (2019): 7375.

[35]

S. Poppe, X. Cheng, C. Chen, et al., “Liquid Organic Frameworks: The Single-Network ‘Plumber's Nightmare’ Bicontinuous Cubic Liquid Crystal,” Journal of the American Chemical Society 142 (2020): 3296.

[36]

C. Chen, M. Poppe, S. Poppe, C. Tschierske, and F. Liu, “Liquid Organic Frameworks: A Liquid Crystalline 8-Connected Network With Body-Centered Cubic Symmetry,” Angewandte Chemie International Edition 59 (2020): 20820.

[37]

Y. Sun and F. A. Escobedo, “Coarse-Grained Molecular Simulation of Bolapolyphiles With a Multident Lateral Chain: Formation and Structural Analysis of Cubic Network Phases,” Journal of Chemical Theory and Computation 20 (2024): 1519.

[38]

C. Chen, M. Poppe, S. Poppe, M. Wagner, C. Tschierske, and F. Liu, “Tetrahedral Liquid-Crystalline Networks: An A15-Like Frank-Kasper Phase Based on Rod-Packing,” Angewandte Chemie International Edition 61 (2022): e20220344.

[39]

F. C. Frank and J. S. Kasper, “Complex Alloy Structures Regarded as Sphere Packings. I. Definitions and Basic Principles,” Acta Crystallographica 11 (1958): 184.

[40]

F. C. Frank and J. S. Kasper, “Complex Alloy Structures Regarded as Sphere Packings. II. Analysis and Classification of Representative Structures,” Acta Crystallographica 12 (1959): 483.

[41]

X.-Y. Liu, X.-Y. Yan, Y. Liu, et al., “Self-Assembled Soft Alloy With Frank-Kasper Phases Beyond Metals,” Nature Materials 23 (2024): 570.

[42]

X.-H. Li, X. Kuang, X. Y. Liu, et al., “Exploring Fullerene-Based Superlattices Self-Assembled via Giant Molecules,” Giant 16 (2023): 100196.

[43]

G. R. Stewart, “Superconductivity in the A15 Structure,” Physica C 514 (2015): 28.

[44]

K. Fontell, “Cubic Phases in Surfactant and Surfactant-Like Lipid Systems,” Colloid and Polymer Science 268 (1990): 264.

[45]

R. R. Balmbra, J. S. Clunie, and J. F. Goodman, “Cubic Mesomorphic Phases,” Nature 222 (1969): 1159-1160.

[46]

V. Luzzati, R. Vargas, P. Mariani, A. Gulik, and H. Delacroix, “Cubic Phases of Lipid-Containing Systems,” Journal of Molecular Biology 229 (1993): 540.

[47]

A. Jayaraman and M. K. Mahanthappa, “Counterion-Dependent Access to Low-Symmetry Lyotropic Sphere Packings of Ionic Surfactant Micelles,” Langmuir 34 (2018): 2290.

[48]

K. Borisch, S. Diele, P. Göring, and C. Tschierske, “Molecular Design of Amphitropic Liquid Crystalline Carbohydrates-Amphiphilic N-Methyl-Glucamides Exhibiting Lamellar, Columnar or Cubic Mesophases,” Chemical Communications (1996): 237.

[49]

K. Borisch, S. Diele, P. Göring, H. Kresse, and C. Tschierske, “Design of Thermotropic Liquid Crystals With Micellar Cubic Mesophases: Amphiphilic N-(2,3-Dihydroxypropyl)Benzamides,” Angewandte Chemie International Edition 36 (1997): 2087.

[50]

M. Huang, C.-H. Hsu, J. Wang, et al., “Selective Assemblies of Giant Tetrahedra via Precisely Controlled Positional Interactions,” Science 348 (2015): 424.

[51]

V. S. K. Balagurusamy, G. Ungar, V. Percec, and G. Johansson, “Rational Design of the First Spherical Supramolecular Dendrimers Self-Organized in a Novel Thermotropic Cubic Liquid-Crystalline Phase and the Determination of Their Shape by X-Ray Analysis,” Journal of the American Chemical Society 119 (1997): 1539.

[52]

H.-J. Sun, S. Zhang, and V. Percec, “From Structure to Function via Complex Supramolecular Dendrimer Systems,” Chemical Society Reviews 44 (2015): 3900.

[53]

X. H. Cheng, K. Das, S. Diele, and C. Tschierske, “Influence of Semiperfluorinated Chains on the Liquid Crystalline Properties of Amphiphilic Polyols: Novel Materials With Thermotropic Lamellar, Columnar, Bicontinuous Cubic, and Micellar Cubic Mesophases,” Langmuir 18 (2002): 6521.

[54]

T. Jun, H. Park, S. Jeon, et al., “Mesoscale Frank-Kasper Crystal Structures From Dendron Assembly by Controlling Core Apex Interactions,” Journal of the American Chemical Society 143 (2021): 17548.

[55]

B.-K. Cho, “Spontaneous Bulk Organization of Molecular Assemblers Based on Aliphatic Polyether and/or Poly(Benzyl Ether) Dendrons,” Polymer Journal 44 (2012): 475.

[56]

S. Yazaki, Y. Kamikawa, M. Yoshio, et al., “Ionic Liquid Crystals: Self-assembly of Imidazolium Salts Containing an l-Glutamic Acid Moiety,” Chemistry Letters 37 (2008): 538.

[57]

T. Noguchi, K. Kishikawa, and S. Kohmoto, “Tailoring of Ionic Supramolecular Assemblies Based on Ammonium Carboxylates Toward Liquid-Crystalline Micellar Cubic Mesophases,” Liquid Crystals 35 (2008): 1043.

[58]

X. H. Cheng, S. Diele, and C. Tschierske, “Molecular Design of Liquid-Crystalline Block Molecules: Semifluorinated Pentaerythritol Tetrabenzoates Exhibiting Lamellar, Columnar, and Cubic Mesophases,” Angewandte Chemie International Edition 39 (2000): 592.

[59]

C. M. Wentz, K. K. Lachmayr, E. H. R. Tsai, and L. R. Sita, “Rapid Phase Transitions of Thermotropic Glycolipid Quasicrystal and Frank-Kasper Mesophases: A Mechanistic Rosetta Stone,” Angewandte Chemie International Edition 62 (2023): e202302739.

[60]

I. Bury, B. Heinrich, C. Bourgogne, D. Guillon, and B. Donnio, “Supramolecular Self-Organization of ‘Janus-Like’ Diblock Codendrimers: Synthesis, Thermal Behavior, and Phase Structure Modeling,” Chemistry: A European Journal 12 (2006): 8396.

[61]

A. Kohlmeier and D. Janietz, “Mesomorphic Block Molecules: Semiperfluorinated 1,3,5-Triazine Derivatives Exhibiting Lamellar, Columnar, and Cubic Mesophases,” Chemistry of Materials 18 (2006): 1483.

[62]

N. Komiyama, T. Ohkubo, Y. Maeda, et al., “Magnetic Supramolecular Spherical Arrays: Direct Formation of Micellar Cubic Mesophase by Lanthanide Metallomesogens With 7-Coordination Geometry,” Advancement of Science 11 (2024): 2309226.

[63]

D. Sahoo, M. Peterca, M. R. Imam, B. E. Partridge, Q. Xiao, and V. Percec, “Conformationally Flexible Dendronized Cyclotetraveratrylenes (CTTV)s Self-organize a Large Diversity of Chiral Columnar, Frank-Kasper and Quasicrystal Phases,” Giant 10 (2022): 100096.

[64]

T. Hatano and T. Kato, “A Columnar Liquid Crystal Based on Triphenylphosphine Oxide—Its Structural Changes Upon Interaction With Alkaline Metal Cations,” Chemical Communications 2006 (2006): 1277.

[65]

Y. Sagara and T. Kato, “Stimuli-Responsive Luminescent Liquid Crystals: Change of Photoluminescent Colors Triggered by a Shear-Induced Phase Transition,” Angewandte Chemie International Edition 47 (2008): 5175.

[66]

H. Mukai, M. Yokokawa, M. Ichihara, and K. Hatsusaka, “Discotic Liquid Crystals of Transition Metal Complexes 42: The Detailed Phase Structures and Phase Transition Mechanisms of Two Cub Mesophases Shown by Discotic Liquid Crystals Based on Phthalocyanine Metal Complexes,” Journal of Porphyrins and Phthalocyanines 14 (2010): 188-197.

[67]

V. Percec, M. R. Imam, M. Peterca, et al., “Self-Assembly of Dendronized Triphenylenes Into Helical Pyramidal Columns and Chiral Spheres,” Journal of the American Chemical Society 131 (2009): 7662-7677.

[68]

M. R. Imam, M. Peterca, Q. Xiao, and V. Percec, “Enhancing Conformational Flexibility of Dendronized Triphenylene via Diethylene Glycol Linkers Lowers Transitions of Helical Columnar, Frank-Kasper, and Quasicrystal Phases,” Giant 10 (2022): 100098.

[69]

J. Huang, Z. Su, M. Huang, et al., “Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly,” Angewandte Chemie International Edition 59 (2020): 18563-18571.

[70]

B. M. Rosen, D. A. Wilson, C. J. Wilson, et al., “Predicting the Structure of Supramolecular Dendrimers via the Analysis of Libraries of AB3 and Constitutional Isomeric AB2 Biphenylpropyl Ether Self-Assembling Dendrons,” Journal of the American Chemical Society 131 (2009): 17500-17521.

[71]

X. Liu, R. Zhang, Y. Shao, et al., “Crowding-Induced Unconventional Phase Behaviors in Dendritic Rodlike Molecules via Side-Chain Engineering,” ACS Macro Letters 10 (2021): 844-850.

[72]

C.-J. Jang, J.-H. Ryu, J.-D. Lee, D. Sohn, and M. Lee, “Synthesis and Supramolecular Nanostructure of Amphiphilic Rigid Aromatic-Flexible Dendritic Block Molecules,” Chemistry of Materials 16 (2004): 4226.

[73]

X. Cheng, X. Bai, S. Jing, H. Ebert, M. Prehm, and C. Tschierske, “Self-Assembly of Imidazolium-Based Rodlike Ionic Liquid Crystals: Transition From Lamellar to Micellar Organization,” Chemistry: A European Journal 16 (2010): 4588-4601.

[74]

S. H. Seo, J. H. Park, G. N. Tew, and J. Y. Chang, “Thermotropic Liquid Crystals of 1H-Imidazole Amphiphiles Showing Hexagonal Columnar and Micellar Cubic Phases,” Tetrahedron Letters 48 (2007): 6839-6844.

[75]

X. Tan, L. Kong, H. Dai, X. Cheng, F. Liu, and C. Tschierske, “Triblock Polyphiles Through Click Chemistry: Self-Assembled Thermotropic Cubic Phases Formed by Micellar and Monolayer Vesicular Aggregates,” Chemistry: A European Journal 19 (2013): 16303.

[76]

T. Yasuda, H. Ooi, J. Morita, et al., “π-Conjugated Oligothiophene-Based Polycatenar Liquid Crystals: Self-Organization and Photoconductive, Luminescent, and Redox Properties,” Advanced Functional Materials 19 (2009): 411.

[77]

T. Hatano and T. Kato, “Nanostructured Columnar and Cubic Liquid-Crystalline Assemblies Consisting of Unconventional Rigid Mesogens Based on Triphenylmethanes,” Tetrahedron 64 (2008): 8368.

[78]

X. Feng, R. Zhang, Y. Li, et al., “Hierarchical Self-Organization of AB n Dendron-Like Molecules Into a Supramolecular Lattice Sequence,” ACS Central Science 3 (2017): 860.

[79]

S. Lee, C. Leighton, and F. S. Bates, “Sphericity and Symmetry Breaking in the Formation of Frank-Kasper Phases From One Component Materials,” Proceedings National Academy of Science of the United States of America 111 (2014): 17723.

[80]

A. Reddy, M. B. Buckley, A. Arora, F. S. Bates, K. D. Dorfman, and G. M. Grason, “Stable Frank-Kasper Phases of Self-Assembled, Soft Matter Spheres,” Proceedings National Academy of Science of the United States of America 115 (2018): 10233.

[81]

K. D. Dorfman, “Frank-Kasper Phases in Block Polymers,” Macromolecules 54 (2021): 10251.

[82]

K. Kim, M. W. Schulze, A. Arora, et al., “Thermal Processing of Diblock Copolymer Melts Mimics Metallurgy,” Science 356 (2017): 520.

[83]

Z. Xu, Q. Dong, and W. Li, “Architectural Design of Block Copolymers,” Macromolecules 57 (2024): 1869.

[84]

P. Ziherl and R. D. Kamien, “Maximizing Entropy by Minimizing Area: Towards a New Principle of Self-Organization,” Journal of Physical Chemistry B 105 (2001): 10147.

[85]

H. Lee, J. Kim, and M. J. Park, “Exploration of Complex Nanostructures in Block Copolymers,” Physical Review Materials 8 (2024): 020302.

[86]

D. A. Tomalia and S. N. Khanna, “A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-Like Nanoperiodic Tables,” Chemical Reviews 116 (2016): 2705.

[87]

G. M. Grason and E. L. Thomas, “How Does Your Gyroid Grow? A Mesoatomic Perspective on Supramolecular, Soft Matter Network Crystals,” Physical Review Materials 7 (2023): 045603.

[88]

X.-Y. Yan, Y. Liu, X.-Y. Liu, et al., “Guidelines for Superlattice Engineering With Giant Molecules: The Pivotal Role of Mesoatoms,” Physical Review Materials 7 (2023): 120302.

[89]

Y. Liu, Q.-Y. Guo, Z. Huang, et al., “Mesoatomic Engineering for Programmable Spherical Packing Superlattices in Self-Assembly of Giant Molecular Clusters,” CCS Chemistry (2024), https://doi.org/10.31635/ccschem.024.202404791.

[90]

S. Wang, S. Lee, J. S. Du, et al., “The Emergence of Valency in Colloidal Crystals Through Electron Equivalents,” Nature Materials 21 (2022): 580.

[91]

O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, and J. Kim, “Reticular Synthesis and the Design of New Materials,” Nature 423 (2003): 705.

[92]

U. H. F. Bunz, “Poly(aryleneethynylene)s,” Macromolecular Rapid Communications 30 (2009): 772.

[93]

A. Kreyes, A. Masoud, I. Lieberwirth, et al., “The Longest β-Unsubstituted Oligothiophenes and Their Self-Assembly in Solution,” Chemistry of Materials 22 (2010): 6453.

[94]

C. Anders, M. Wagner, M. Alaasar, et al., “Highly Branched Bolapolyphilic Liquid Crystals With a Cubic A15 Network at the Triangle-Square Transition,” Chemical Communications 60 (2024): 1023.

[95]

M. Hird, “Fluorinated Liquid Crystals—Properties and Applications,” Chemical Society Reviews 36 (2007): 2070.

[96]

M. Poppe, C. Chen, H. Ebert, et al., “Transition From Nematic to Gyroid-Type Cubic Soft Self-Assembly by Side-Chain Engineering of π-Conjugated Sticky Rods,” Soft Matter 13 (2017): 4381.

[97]

M. Poppe, C. Chen, F. Liu, M. Prehm, S. Poppe, and C. Tschiersk, “Emergence of Tilt in Square Honeycomb Liquid Crystalse,” Soft Matter 13 (2017): 4676.

[98]

M. Poppe, C. Chen, F. Liu, S. Poppe, and C. Tschierske, “Emergence of Uniform Tilt and π-Stacking in Triangular Liquid Crystalline Honeycombs,” Chemical Communications 57 (2021): 6526.

[99]

S. Werner, H. Ebert, B.-D. Lechner, et al., “Dendritic Domains With Hexagonal Symmetry Formed by X-Shaped Bolapolyphiles in Lipid Membranes,” Chemistry: A European Journal 21 (2015): 8840.

[100]

M. Poppe, C. Chen, F. Liu, S. Poppe, and C. Tschierske, “Formation of a Cubic Liquid Crystalline Nanostructure With π-Conjugated Fluorinated Rods on the Gyroid Minimal Surface,” Chemistry: A European Journal 23 (2017): 7196.

[101]

K. Sonogashira, Y. Tohda, and N. Hagihara, “A Convenient Synthesis of Acetylenes: Catalytic Substitutions of Acetylenic Hydrogen With Bromoalkenes, Iodoarenes and Bromopyridines,” Tetrahedron Letters 16 (1975): 4467.

[102]

Y. C. Chiang, H. C. Wu, H.-F. Wen, et al., “Tailoring Carbosilane Side Chains Toward Intrinsically Stretchable Semiconducting Polymers,” Macromolecules 52 (2019): 4396.

[103]

Y. Duan, J. H. Lin, J. C. Xiao, and Y. C. Gu, “Fe-Catalyzed insertion of Fluoromethylcarbenes Generated From Sulfonium Salts Into X-H bonds (X = Si, C, P),” Organic Chemistry Frontiers 4 (2017): 1917-1920.

[104]

G. Nagarjuna, A. Kokil, J. Kumar, and D. Venkataraman, “A Straightforward Route to Electron Transporting Conjugated Polymers,” Journal of Materials Chemistry 22 (2012): 16091.

[105]

R. van Rijsbergen, M. J. O. Anteunis, and A. De Bruyn, “Selective Removal of the Isopropylidene Group in 4-O-Protected 1,6-Anhydro-2,3-O-Isopropylidene-β-d-Mannopyranose and the Conformational Impact of It,” Journal of Carbohydrate Chemistry 2 (1983): 395.

[106]

A. Immirzi and B. Perini, “Prediction of Density in Organic Crystals,” Acta Crystallographica Section A 33 (1977): 216.

[107]

C. Tschierske, Topics in Current Chemistry (Berlin, Heidelberg: Springer, 2012).

[108]

Y. Xu, Y. Hu, Q. Chen, and J. Wen, “Synthesis and Characterization of Octafluorinated 1,2-(4,4′-Dialkoxyaryl)Acetylene Monomers and 1,4-Bis[(4′,4′-Dialkoxyphenyl)Ethynyl]Benzene Dimers,” Journal of Materials Chemistry 5 (1995): 219.

[109]

G. N. Patwari, P. Venuvanalingam, and M. Kolaski, “Phenylacetylene Dimer: Ab Initio and DFT Study,” Chemical Physics 415 (2013): 150.

[110]

S. E. Wheeler and K. N. Houk, “Origin of Substituent Effects in Edge-to-Face Aryl-Aryl Interactions,” Molecular Physics 107 (2009): 749.

[111]

P. V. James, P. K. Sudeep, C. H. Suresh, and K. G. Thomas, “Photophysical and Theoretical Investigations of Oligo(p-Phenyleneethynylene)s:  Effect of Alkoxy Substitution and Alkyne−Aryl Bond Rotations,” Journal of Physical Chemistry A 110 (2006): 4329.

[112]

M. Levitus, K. Schmieder, H. Ricks, K. D. Shimizu, U. H. F. Bunz, and M. A. Garcia-Garibay, “Steps To Demarcate the Effects of Chromophore Aggregation and Planarization in Poly(Phenyleneethynylene)s. 1. Rotationally Interrupted Conjugation in the Excited States of 1,4-Bis(Phenylethynyl)Benzene,” Journal of the American Chemical Society 123 (2001): 4259.

[113]

C. A. Hunter and J. K. M. Sanders, “The Nature of .pi.-.pi. interactions,” Journal of the American Chemical Society 112 (1990): 5525.

[114]

S. E. Wheeler, “Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings,” Accounts of Chemical Research 46 (2013): 1029.

[115]

K. Carter-Fenk and J. M. Herbert, “Reinterpreting π-Stacking,” Physical Chemistry Chemical Physics 22 (2020): 24870.

[116]

K. Kishikawa, “Utilization of the Perfluoroarene-Arene Interaction for Stabilization of Liquid Crystal Phases,” Isrrael Journal of Chemistry 52 (2012): 800.

[117]

K. Kishikawa, S. Aikyo, S. Akiyama, et al., “Realization of a Lateral Directional Order in Nematic and Smectic A Phases of Rodlike Molecules by Using Perfluoroarene-Arene Interactions,” Soft Matter 7 (2011): 5176.

[118]

A. Kundu, S. Sen, and G. N. Patwari, “Dipole Moment Propels π-Stacking of Heterodimers of Fluorophenylacetylenes,” Journal of Physical Chemistry 124 (2020): 7470.

[119]

S. Yamada, M. Morita, T. Agou, T. Kubota, T. Ichikawa, and T. Konno, “Thermoresponsive Luminescence Properties of Polyfluorinated Bistolane-Type Light-Emitting Liquid Crystals,” Organic & Biomolecular Chemistry 16 (2018): 5609.

[120]

G. W. Coates, A. R. Dunn, L. M. Henling, D. A. Dougherty, and R. H. Grubbs, “Phenyl-Perfluorophenyl Stacking Interactions: A New Strategy for Supermolecule Construction,” Angewandte Chemie International Edition 36 (1997): 248.

[121]

S. A. Sharber, R. N. Baral, F. Frausto, T. E. Haas, P. Müller, and S. W. Thomas, “Substituent Effects That Control Conjugated Oligomer Conformation Through Non-Covalent Interactions,” Journal of the American Chemical Society 139 (2017): 5164.

[122]

C. Dai, P. Nguyen, T. B. Marder, A. J. Scott, W. Clegg, and C. Viney, “Control of Single Crystal Structure and Liquid Crystal Phase Behaviour via Arene-Perfluoroarene Interactions,” Chemical Communications (1999): 2493.

[123]

C. E. Smith, P. S. Smith, R. L. Thomas, et al., “Arene-Perfluoroarene Interactions in Crystal Engineering: Structural Preferences in Polyfluorinated Tolans,” Journal of Materials Chemistry 14 (2004): 413.

[124]

K. B. Woody, J. E. Bullock, S. R. Parkin, and M. D. Watson, “Alternating Arene−Perfluoroarene Poly(Phenylene Ethynylenes),” Macromolecules 40 (2007): 4470.

[125]

L. Shua and M. Mayor, “Shape-Persistent Macrocycle With a Self-Complementary Recognition Pattern Based on Diacetylene-Linked Alternating Hexylbenzene and Perfluorobenzene Rings,” Chemical Communications 2006 (2006): 4134.

[126]

S. Yamada and T. Konno, “Development of Donor-π-Acceptor-Type Fluorinated Tolanes as Compact Condensed Phase Luminophores and Applications in Photoluminescent Liquid-Crystalline Molecules,” Chemical Record 23 (2023): e202300094.

[127]

A. Lehmann, A. Scholte, M. Prehm, et al., “Soft Rectangular Sub-5 nm Tiling Patterns by Liquid Crystalline Self-Assembly of T-Shaped Bolapolyphiles,” Advanced Functional Materials 28 (2018): 1804162.

[128]

S. Poppe, A. Lehmann, M. Steimecke, et al., “Reticular Liquid Crystal Design: Controlling Complex Self-assembly of p-Terphenyl Rods by Side-Chain Engineering and Chirality,” Giant 18 (2024): 100254.

[129]

C. Anders, V. M. Fischer, T. Tan, et al., “Modifying the Liquid Crystalline Chessboard Tilig-Soft Reticular Self-Assembly of Side-Chain Fluorinated Polyphiles,” Journal of Materials Chemistry C (2025), https://doi.org/10.1039/D4TC04076G.

[130]

P. A. Stampfli, “A Dodecagonal Quasiperiodic Lattice in Two Dimensions,” Helvetica Physica Acta 59 (1986): 1260.

[131]

X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K. Hobbs, “Supramolecular Dendritic Liquid Quasicrystals,” Nature 428 (2004): 157.

[132]

K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita, “Polymeric Quasicrystal: Mesoscopic Quasicrystalline Tiling in ABC Star Polymers,” Physical Review Letter 98 (2007): 195502.

[133]

X. Zeng, B. Glettner, U. Baumeister, et al., “A Columnar Liquid Quasicrystal With a Honeycomb Structure That Consists of Triangular, Square and Trapezoidal Cells,” Nature Chemistry 15 (2023): 625.

[134]

Y. Cao, A. Scholte, M. Prehm, et al., “Understanding the Role of Trapezoids in Honeycomb Self-Assembly—Pathways Between a Columnar Liquid Quasicrystal and Its Liquid-Crystalline Approximants,” Angewandte Chemie International Edition 63 (2023): e202314454.

[135]

M. Imperor-Clerc, P. Kalugin, S. Schenk, W. Widdra, and S. Förster, “Higher-Dimensional Geometrical Approach for the Characterization of Two-Dimensional Square-Triangle-Rhombus Tilings,” Physical Review B 110 (2024): 144106.

[136]

L. Li, Q. Dong, and W. Li, “Stabilize Various Novel Network Structures via the Alternate Arrangement of A/C Domains in Close Contact by Tailoring ABC Miktoarm Star Architectures,” Macromolecules 57 (2023): 409.

[137]

J. J. Oppenheim, G. Skorupskii, and M. Dinca, “Aperiodic Metal-Organic Frameworks,” Chemical Science 11 (2020): 11094.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/