Intramolecular Aggregation-Induced Surface Coupling of Metal Nanoclusters: Structure Elucidation and Photoluminescence Manipulation

Jian Zhu , Rui Zhao , Honglei Shen , Chen Zhu , Meng Zhou , Xi Kang , Manzhou Zhu

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e720

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e720 DOI: 10.1002/agt2.720
RESEARCH ARTICLE

Intramolecular Aggregation-Induced Surface Coupling of Metal Nanoclusters: Structure Elucidation and Photoluminescence Manipulation

Author information +
History +
PDF

Abstract

The restriction of the molecular motion has been extensively exploited in tailoring the photoluminescence (PL) of metal nanoclusters, while the activation of such a restriction at the molecular level remains highly challenging. In this work, a two-step strategy, that is, surface activating and surface coupling, was proposed to induce the restriction of the molecular motion of nanoclusters at the molecular level, and the corresponding nanoclusters underwent emission appearance and enhancement. The peripheral phosphine ligand functionalization and alkali metal cation introduction gave rise to a series of structural-correlated M+-incorporated Cu14 nanoclusters (M = Li, Na, K, Rb, Cs) with a surface-aggregation characteristic, among which the K+-participating nanocluster displayed the strongest fluorescence intensity in both solution and crystal states. Atomic-level structure–property correlations were investigated to rationalize the PL comparisons. Overall, this work offers a new perspective for regulating the PL of metal nanoclusters via restricting their molecular motions, hopefully providing insight into the fabrication of highly emissive metal nanoclusters and cluster-based nanomaterials.

Keywords

aggregation-induced emission / atomically precise nanoclusters / photoluminescence / surface activating / surface coupling

Cite this article

Download citation ▾
Jian Zhu, Rui Zhao, Honglei Shen, Chen Zhu, Meng Zhou, Xi Kang, Manzhou Zhu. Intramolecular Aggregation-Induced Surface Coupling of Metal Nanoclusters: Structure Elucidation and Photoluminescence Manipulation. Aggregate, 2025, 6(3): e720 DOI:10.1002/agt2.720

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. F. Matus and H. Häkkinen, “Understanding Ligand-Protected Noble Metal Nanoclusters at Work,” Nature Reviews Materials 8 (2023): 372-389.

[2]

R. Jin, C. Zeng, M. Zhou, and Y. Chen, “Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities,” Chemical Review 116 (2016): 10346-10413.

[3]

I. Chakraborty and T. Pradeep, “Atomically Precise Clusters of Noble Metals: Emerging Link Between Atoms and Nanoparticles,” Chemical Review 117 (2017): 8208-8271.

[4]

S. Kenzler and A. Schnepf, “Metalloid Gold Clusters-Past, Current and Future Aspects,” Chemical Science 12 (2021): 3116-3129.

[5]

X. Wang, B. Yin, L. Jiang, et al., “Ligand-Protected Metal Nanoclusters as Low-Loss, Highly Polarized Emitters for Optical Waveguides,” Science 381 (2023): 784-790.

[6]

W. Shi, L. Zeng, R. He, et al., “Near-Unity NIR Phosphorescent Quantum Yield From a Room-temperature Solvated Metal Nanocluster,” Science 383 (2024): 326-330.

[7]

E. L. Albright, T. I. Levchenko, V. K. Kulkarni, et al., “N-Heterocyclic Carbene-Stabilized Atomically Precise Metal Nanoclusters,” Journal of the American Chemical Society 146 (2024): 5759-5780.

[8]

L. Fang, W. Fan, G. Bian, et al., “Sandwich-Kernelled AgCu Nanoclusters With Golden Ratio Geometry and Promising Photothermal Efficiency,” Angewandte Chemie International Edition 62 (2023): e202305604.

[9]

C. A. Hosier and C. J. Ackerson, “Regiochemistry of Thiolate for Selenolate Ligand Exchange on Gold Clusters,” Journal of the American Chemical Society 141 (2019): 309-314.

[10]

J. Zhao, A. Ziarati, A. Rosspeintner, and T. Bürgi, “Anchoring of Metal Complexes on Au25 Nanocluster for Enhanced Photocoupled Electrocatalytic CO2 Reduction,” Angewandte Chemie International Edition 63 (2024): e202316649.

[11]

Y. Horita, S. Hossain, M. Ishimi, et al., “Clarifying the Electronic Structure of Anion-Templated Silver Nanoclusters by Optical Absorption Spectroscopy and Theoretical Calculation,” Journal of the American Chemical Society 145 (2023): 23533-23540.

[12]

H. Seong, Y. Jo, V. Efremov, et al., “Transplanting Gold Active Sites Into Non-Precious-Metal Nanoclusters for Efficient CO2 -to-CO Electroreduction,” Journal of the American Chemical Society 145 (2023): 2152-2160.

[13]

A. Chakraborty, A. C. Fernandez, A. Som, et al., “Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods,” Angewandte Chemie International Edition 57 (2018): 6522-6526.

[14]

H. Shen, Q. Wu, S. Malola, et al., “N-Heterocyclic Carbene-Stabilized Gold Nanoclusters With Organometallic Motifs for Promoting Catalysis,” Journal of the American Chemical Society 144 (2022): 10844-10853.

[15]

K. Pyo, M. F. Matus, E. Hulkko, et al., “Atomistic View of the Energy Transfer in a Fluorophore-Functionalized Gold Nanocluster,” Journal of the American Chemical Society 145 (2023): 14697-14704.

[16]

X. Kang and M. Zhu, “Tailoring the Photoluminescence of Atomically Precise Nanoclusters,” Chemical Society Reviews 48 (2019): 2422-2457.

[17]

S. Zhang, S. Havenridge, C. Zhang, et al., “Sulfide Boosting Near-Unity Photoluminescence Quantum Yield of Silver Nanocluster,” Journal of the American Chemical Society 144 (2022): 18305-18314.

[18]

C. Dong, X. Song, B. E. Hasanov, et al., “Organic-Inorganic Hybrid Glasses of Atomically Precise Nanoclusters,” Journal of the American Chemical Society 146 (2024): 7373-7385.

[19]

R. Huang, Y. Wei, X. Dong, et al., “Hypersensitive Dual-Function Luminescence Switching of a Silver-Chalcogenolate Cluster-based Metal-Organic Framework,” Nature Chemistry 9 (2017): 689-697.

[20]

G. Dong, Z. Pan, B. Han, et al., “Multi-Layer 3D Chirality and Double-Helical Assembly in a Copper Nanocluster With a Triple-Helical Cu15 Core,” Angewandte Chemie International Edition 62 (2023): e202302595.

[21]

S. Zhou, L. Gustavsson, G. Beaune, et al., “pH-Responsive Near-Infrared Emitting Gold Nanoclusters,” Angewandte Chemie International Edition 62 (2023): e202312679.

[22]

X. Luo, J. Kong, H. Xiao, et al., “Noncovalent Interaction Guided Precise Photoluminescence Regulation of Gold Nanoclusters in Both Isolate Species and Aggregate States,” Angewandte Chemie International Edition 63 (2024): e202404129.

[23]

K. L. D. M. Weerawardene and C. M. Aikens, “Theoretical Insights Into the Origin of Photoluminescence of Au25(SR)18 Nanoparticles,” Journal of the American Chemical Society 138 (2016): 11202-11210.

[24]

D. Arima, S. Hidaka, S. Yokomori, et al., “Triplet-Mediator Ligand-Protected Metal Nanocluster Sensitizers for Photon Upconversion,” Journal of the American Chemical Society 146 (2024): 16630-16638.

[25]

Y. Zeng, S. Havenridge, M. Gharib, et al., “Impact of Ligands on Structural and Optical Properties of Ag29 Nanoclusters,” Journal of the American Chemical Society 143 (2021): 9405-9414.

[26]

G. Soldan, M. A. Aljuhani, M. S. Bootharaju, et al., “Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield,” Angewandte Chemie International Edition 55 (2016): 5749-5753.

[27]

X. Kang, X. Wei, S. Jin, et al., “Rational Construction of a Library of M29 Nanoclusters From Monometallic to Tetrametallic,” Proceedings of the National Academy of Sciences of the United States of America 116 (2019): 18834-18840.

[28]

H. Hirai, S. Takano, T. Nakashima, T. Iwasa, T. Taketsugu, and T. Tsukuda, “Doping-Mediated Energy-Level Engineering of M@Au12 Superatoms (M = Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis,” Angewandte Chemie International Edition 61 (2022): e202207290.

[29]

Y. Zhang, W. Zhang, T. Zhang, et al., “Site-Recognition-Induced Structural and Photoluminescent Evolution of the Gold-Pincer Nanocluster,” Journal of the American Chemical Society 146 (2024): 9631-9639.

[30]

Y. Zhong, J. Zhang, T. Li, et al., “Suppression of Kernel Vibrations by Layer-by-Layer Ligand Engineering Boosts Photoluminescence Efficiency of Gold Nanoclusters,” Nature Communications 14 (2023): 658.

[31]

H. Shen, J. Xu, Z. Fu, et al., “Photoluminescence Quenching of Hydrophobic Ag29 Nanoclusters Caused by Molecular Decoupling During Aqueous Phase Transfer and EmissionRecovery Through Supramolecular Recoupling,” Angewandte Chemie International Edition 63 (2024): e202317995.

[32]

Z. Luo, X. Yuan, Y. Yu, et al., “From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-Shell Nanoclusters,” Journal of the American Chemical Society 134 (2012): 16662-16670.

[33]

Y. Kong, Z. Yan, S. Li, et al., “Photoresponsive Propeller-Like Chiral AIE Copper(I) Clusters,” Angewandte Chemie International Edition 59 (2020): 5336-5340.

[34]

M. Sugiuchi, J. Maeba, N. Okubo,M. Iwamura, K. Nozaki, and K. Konishi, “Aggregation-Induced Fluorescence-to-Phosphorescence Switching of Molecular Gold Clusters,” Journal of the American Chemical Society 139 (2017): 17731-17734.

[35]

Y. Shi, J. Ma, A. Feng, Z. Wang, and A. L. Rogach, “Aggregation-Induced Emission of Copper Nanoclusters,” Aggregate 2 (2021): e112.

[36]

N. Goswami, Q. Yao, Z. Luo, J. Li, T. Chen, and J. Xie, “Luminescent Metal Nanoclusters With Aggregation-Induced Emission,” Journal of Physical Chemistry Letters 7 (2016): 962-975.

[37]

J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, and B. Z. Tang, “Aggregation-Induced Emission: Together We Shine, United We Soar!,” Chemical Reviews 115 (2015): 11718-11940.

[38]

N. Goswami, F. Lin, Y. Liu, D. T. Leong, and J. Xie, “Highly Luminescent Thiolated Gold Nanoclusters Impregnated in Nanogel,” Chemistry of Materials 28 (2016): 4009-4016.

[39]

D. Bera, M. Baruah, A. K. Dehury, A. Samanta, Y. S. Chaudhary, and N. Goswami, “Depletion Driven Assembly of Ultrasmall Metal Nanoclusters: From Kinetically Arrested Assemblies to Thermodynamically Stable, Spherical Superclusters,” Journal of Physical Chemistry Letters 13 (2022): 9411-9421.

[40]

X. Wei, X. Kang, S. Jin, S. Wang, and M. Zhu, “Aggregation of Surface Structure Induced Photoluminescence Enhancement in Atomically Precise Nanoclusters,” Carbon Capture and Storage Chemistry 3 (2020): 1929-1939.

[41]

M. Walter, J. Akola, O. Lopez-Acevedo, et al., “A Unified View of Ligand-Protected Gold Clusters as Superatom Complexes,” Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 9157-9162.

[42]

L. G. AbdulHalim, M. S. Bootharaju, Q. Tang, et al., “Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster,” Journal of the American Chemical Society 137 (2015): 11970-11975.

[43]

Y. Niihori, N. Takahashi, and M. Mitsui, “Photophysical and Thermodynamic Properties of Ag29(BDT)12(TPP)x (x = 0-4) Clusters in Secondary Ligand Binding-Dissociation Equilibria Unraveled by Photoluminescence Analysis,” Journal of Physical Chemistry C 124 (2020): 5880-5886.

[44]

Y. Li, J. Wang, P. Luo, et al., “Cu14 Cluster With Partial Cu(0) Character: Difference in Electronic Structure From Isostructural Silver Analog,” Advancement of Science 6 (2019): 1900833.

[45]

M. Zhang, X. Dong, Z. Wang, et al., “AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters,” Angewandte Chemie International Edition 59 (2020): 10052-10058.

[46]

H. Döllefeld, H. Weller, and A. Eychmüller, “Semiconductor Nanocrystal Assemblies: Experimental Pitfalls and a Simple Model of Particle−Particle Interaction,” Journal of Physical Chemistry B 106 (2002): 5604-5608.

[47]

X. Wei, X. Kang, Z. Zuo, F. Song, S. Wang, and M. Zhu, “Hierarchical Structural Complexity in Atomically Precise Nanocluster Frameworks,” National Science Review 8 (2021): nwaa077.

[48]

J. Zhang, C. Rowland, Y. Liu, et al., “Evolution of Self-Assembled ZnTe Magic-Sized Nanoclusters,” Journal of the American Chemical Society 137 (2015): 742-749.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/