RAFT Copolymerization of Pt(II) Pincer Complexes With Water-Soluble Polymer as an Efficient Way to Obtain Micellar-Type Nanoparticles With Aggregation-Induced NIR Emission

Roman A. Shilov , Vadim A. Baigildin , Kristina S. Kisel , Ekaterina E. Galenko , Alexander S. Gubarev , Mariya E. Mikhailova , Olga S. Vezo , Nikolai V. Tsvetkov , Andrey A. Shtyrov , Mikhail N. Ryazantsev , Julia R. Shakirova , Sergey P. Tunik

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e713

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e713 DOI: 10.1002/agt2.713
RESEARCH ARTICLE

RAFT Copolymerization of Pt(II) Pincer Complexes With Water-Soluble Polymer as an Efficient Way to Obtain Micellar-Type Nanoparticles With Aggregation-Induced NIR Emission

Author information +
History +
PDF

Abstract

The idea of preparation a water-soluble Pt-containing AIEgen was successfully realized by direct reversible addition-fragmentation transfer copolymerization of a Pt(II) complex (LPtPV) containing a vinyl group and polyvinylpyrrolidone (p(VP)). The resulting block-copolymer p(VP-b-LPtPV) containing 5–8 Pt(II) chromophores exhibits intriguing photophysical properties—strong solvent and concentration dependence of absorption and emission characteristics. Various physicochemical and analytical methods (NMR spectroscopy, XRD analysis, ESI-MS, AUC, DLS, ICP-OES, GPC, viscometry, TEM) were used to characterize the initial complex, its binuclear analogs, p(VP) and p(VP-b-LPtPV). The obtained data indicate that the photophysical properties of the latter are dictated by the type of aggregation process rather than solvatochromic effects. It is shown that at low concentration in organic solvents, the platinum chromophores aggregation is either absent (dimethylformamide) or occurs predominantly at intramolecular level (MeCN), whereas in aqueous media, p(VP-b-LPtPV) readily aggregates into micellar-type nanoparticles with a hydrophilic p(VP) corona and a hydrophobic Pt-containing core, in which strong intra- and intermolecular Pt···Pt and/or π···π interactions result in a significant red shift of absorption and emission down to 600 and 816 nm, respectively. Despite of emission shift into NIR area where emission is commonly quenched by nonradiative vibrational relaxation, an increase in the emission quantum yield occurs in complete agreement with the typical aggregation-induced emission (AIE) emitters’ behavior. Quantum mechanics/molecular mechanics simulations of aggregation processes also confirm the trends in the relationship between aggregation mode and photophysical behavior, particularly, in the variations of energy gaps between the ground state of the AIEgens and their excited singlet and triplet states.

Keywords

aggregation-induced emission / micelle formation / platinum complexes / RAFT-polymerization

Cite this article

Download citation ▾
Roman A. Shilov, Vadim A. Baigildin, Kristina S. Kisel, Ekaterina E. Galenko, Alexander S. Gubarev, Mariya E. Mikhailova, Olga S. Vezo, Nikolai V. Tsvetkov, Andrey A. Shtyrov, Mikhail N. Ryazantsev, Julia R. Shakirova, Sergey P. Tunik. RAFT Copolymerization of Pt(II) Pincer Complexes With Water-Soluble Polymer as an Efficient Way to Obtain Micellar-Type Nanoparticles With Aggregation-Induced NIR Emission. Aggregate, 2025, 6(3): e713 DOI:10.1002/agt2.713

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Förster and K. Kasper, “Ein Konzentrationsumschlag der Fluoreszenz des Pyrens,” Zeitschrift Für Elektrochemie, Berichte Der Bunsengesellschaft Für Phys Chemie 59 (1955): 976-980.

[2]

G. v. Bünau, “J. B. Birks: Photophysics of Aromatic Molecules. Wiley-Interscience, London 1970. 704 Seiten. Preis: 210s,” Berichte Der Bunsengesellschaft Für Phys Chemie 74 (1970): 1294-1295.

[3]

J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, and B. Z. Tang, “Aggregation-Induced Emission: Together We Shine, United We Soar!,” Chemical Reviews 115 (2015): 11718-11940.

[4]

V. Sathish, A. Ramdass, P. Thanasekaran, K.-L. Lu, and S. Rajagopal, “Aggregation-Induced Phosphorescence Enhancement (AIPE) Based on Transition Metal Complexes—An Overview,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 23 (2015): 25-44.

[5]

C. Cebrián and M. Mauro, “Recent Advances in Phosphorescent Platinum Complexes for Organic Light-Emitting Diodes,” Beilstein Journal of Organic Chemistry 14 (2018): 1459-1481.

[6]

A. Aliprandi, D. Genovese, M. Mauro, and L. De Cola, “Recent Advances in Phosphorescent Pt(II) Complexes Featuring Metallophilic Interactions: Properties and Applications,” Chemistry Letters 44 (2015): 1152-1169.

[7]

A. Pinto, N. Svahn, J. C. Lima, and L. Rodríguez, “Aggregation Induced Emission of Gold(I) Complexes in Water or Water Mixtures,” Dalton Transactions 46 (2017): 11125-11139.

[8]

L. Ravotto and P. Ceroni, “Aggregation Induced Phosphorescence of Metal Complexes: From Principles to Applications,” Coordination Chemistry Reviews 346 (2017): 62-76.

[9]

G. Moreno-Alcántar, A. Aliprandi, and L. De Cola, “Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives,” Topics in Current Chemistry 379 (2021): 31.

[10]

A. S. Y. Law, L. C. C. Lee, K. K. W. Lo, and V. W. W. Yam, “Aggregation and Supramolecular Self-Assembly of Low-Energy Red Luminescent Alkynylplatinum(II) Complexes for RNA Detection, Nucleolus Imaging, and RNA Synthesis Inhibitor Screening,” Journal of the American Chemical Society 143 (2021): 5396-5405.

[11]

A. Ramdass, V. Sathish, and P. Thanasekaran, “AIE or AIE(P)E-Active Transition Metal Complexes for Highly Sensitive Detection of Nitroaromatic Explosives,” Results in Chemistry 4 (2022): 100337.

[12]

J. Zhang, K. Liu, Z. Liu, et al., “High-Performance Ketone Sensing in Vapor Phase Enabled by o-Carborane-Modified Cyclometalated Alkynyl-Gold(III) Complex-Based Fluorescent Films,” ACS Applied Materials & Interfaces 13 (2021): 5625-5633.

[13]

Y. Pei, Y. Sun, M. Huang, et al., “Ir(III) Complexes With AIE Characteristics for Biological Applications,” Biosensors 12 (2022): 1104.

[14]

L. Li, L. Zhang, X. Tong, et al., “Near-Infrared-Emitting AIE Multinuclear Cationic Ir(III) Complex-Assembled Nanoparticles for Photodynamic Therapy,” Dalton Transactions 49 (2020): 15332-15338.

[15]

H. Ma, D. Hu, J. Zhao, M. Tian, J. Yuan, and Y. Wei, “Ultrastable Near-Infrared Aggregation-Induced Emission Nanoparticles as a Fluorescent Probe: Long-Term Tumor Monitoring and Lipid Droplet Tracking,” CCS Chemistry 3 (2021): 1569-1606.

[16]

P. Prasad, A. Gupta, and P. K. Sasmal, “Aggregation-Induced Emission Active Metal Complexes: A Promising Strategy to Tackle Bacterial Infections,” Chemical Communications 57 (2021): 174-186.

[17]

L. Ma, Y. Wang, X. Wang, et al., “Transition Metal Complex-Based Smart AIEgens Explored for Cancer Diagnosis and Theranostics,” Coordination Chemistry Reviews 473 (2022): 214822.

[18]

C. Qi, X. Wang, Z. Chen, et al., “Organometallic AIEgens for Biological Theranostics,” Materials Chemistry Frontiers 5 (2021): 3281-3297.

[19]

J. Liu, W. Chen, C. Zheng, et al., “Recent Molecular Design Strategies for Efficient Photodynamic Therapy and Its Synergistic Therapy Based on AIE Photosensitizers,” European Journal of Medicinal Chemistry 244 (2022): 114843.

[20]

F. K. Kong, A. K. Chan, M. Ng, K. Low, and V. W. Yam, “Construction of Discrete Pentanuclear Platinum(II) Stacks With Extended Metal-Metal Interactions by Using Phosphorescent Platinum(II) Tweezers,” Angewandte Chemie International Edition 56 (2017): 15103-15107.

[21]

A. Lázaro, R. Bosque, J. S. Ward, K. Rissanen, M. Crespo, and L. Rodríguez, “Toward Near-Infrared Emission in Pt(II)-Cyclometallated Compounds: From Excimers' Formation to Aggregation-Induced Emission,” Inorganic Chemistry 62 (2023): 2000-2012.

[22]

R. Inoue, T. Naota, and M. Ehara, “Origin of the Aggregation-Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal-Metal Interactions on Emission Decay in the Crystalline State,” Chemistry - An Asian Journal 16 (2021): 3129-3140.

[23]

W. Lu, K. T. Chan, S.-X. Wu, Y. Chen, and C.-M. Che, “Quest for an Intermolecular Au(III)⋯Au(III) Interaction Between Cyclometalated Gold(III) Cations,” Chemical Science 3 (2012): 752-755.

[24]

H. Zhong, S. Jiang, L. Ao, F. Wang, and F. Wang, “Phosphorescent Host-Guest Complexes on the Basis of Polyhedral Oligomeric Silsesquioxane-Functionalized Metallotweezers,” Inorganic Chemistry 61 (2022): 7111-7119.

[25]

H. L.-K. Fu, C. Po, S. Y.-L. Leung, and V. W.-W. Yam, “Self-Assembled Architectures of Alkynylplatinum(II) Amphiphiles and Their Structural Optimization: A Balance of the Interplay Among Pt···Pt, π-π Stacking, and Hydrophobic-Hydrophobic Interactions,” ACS Applied Materials & Interfaces 9 (2017): 2786-2795.

[26]

A. I. Solomatina, E. E. Galenko, D. O. Kozina, et al., “Nonsymmetric [Pt(C^N*N′^C′)] Complexes: Aggregation-Induced Emission in the Solid State and in Nanoparticles Tuned by Ligand Structure,” Chemistry - A European Journal 28 (2022): e202203341.

[27]

N. A. Zharskaia, A. I. Solomatina, Y.-C. Liao, et al., “Aggregation-Induced Ignition of Near-Infrared Phosphorescence of Non-Symmetric [Pt(C^N*N′^C′)] Complex in Poly(caprolactone)-Based Block Copolymer Micelles: Evaluating the Alternative Design of Near-Infrared Oxygen Biosensors,” Biosensors 12 (2022): 695.

[28]

M. Martínez-Junquera, E. Lalinde, and M. T. Moreno, “Multistimuli-Responsive Properties of Aggregated Isocyanide Cycloplatinated(II) Complexes,” Inorganic Chemistry 61 (2022): 10898-10914.

[29]

T. Theiss, S. Buss, I. Maisuls, et al., “Room-Temperature Phosphorescence From Pd(II) and Pt(II) Complexes as Supramolecular Luminophores: The Role of Self-Assembly, Metal-Metal Interactions, Spin-Orbit Coupling, and Ligand-Field Splitting,” Journal of the American Chemical Society 145 (2023): 3937-3951.

[30]

K. Huang, H. Wu, M. Shi, F. Li, T. Yi, and C. Huang, “Reply to Comment on ‘Aggregation-Induced Phosphorescent Emission (AIPE) of Iridium(III) Complexes’: Origin of the Enhanced Phosphorescence,” Chemical Communications 10 (2009): 1243-1245.

[31]

H. Wu, T. Yang, Q. Zhao, J. Zhou, C. Li, and F. Li, “A Cyclometalated Iridium(III) Complex With Enhanced Phosphorescence Emission in the Solid State (EPESS): Synthesis, Characterization and Its Application in Bioimaging,” Dalton Transactions 40 (2011): 1969-1976.

[32]

S. Liu, H. Sun, Y. Ma, et al., “Rational Design of Metallophosphors With Tunable Aggregation-Induced Phosphorescent Emission and Their Promising Applications in Time-Resolved Luminescence Assay and Targeted Luminescence Imaging of Cancer Cells,” Journal of Materials Chemistry 22 (2012): 22167-22173.

[33]

G. Romo-Islas, S. Burguera, A. Frontera, and L. Rodríguez, “Investigating the Impact of Packing and Environmental Factors on the Luminescence of Pt(N^N^N) Chromophores,” Inorganic Chemistry 63, (2024): 2821-2832.

[34]

M. Zhu, W. Lu, N. Zhu, and C. Che, “Structures and Solvatochromic Phosphorescence of Dicationic Terpyridyl-Platinum(II) Complexes With Foldable Oligo(Ortho-Phenyleneethynylene) Bridging Ligands,” Chemistry - A European Journal 14 (2008): 9736-9746.

[35]

R. A. Shilov, I. S. Podkorytov, K. S. Kisel, et al., “DPPM-Bridged Binuclear Pt(II) Pincer Complexes: Chemistry, Structure, and Photophysics in Solution Revisited,” Inorganic Chemistry 63 (2024): 11194-11208.

[36]

S. C. F. Kui, S. S.-Y. Chui, C.-M. Che, and N. Zhu, “Structures, Photoluminescence, and Reversible Vapoluminescence Properties of Neutral Platinum(II) Complexes Containing Extended π-Conjugated Cyclometalated Ligands,” Journal of the American Chemical Society 128 (2006): 8297-8309.

[37]

S. C. F. Kui, I. H. T. Sham, C. C. C. Cheung, et al., “Platinum(II) Complexes With π-Conjugated, Naphthyl-Substituted, Cyclometalated Ligands (RC^N^N): Structures and Photo- and Electroluminescence,” Chemistry - A European Journal 13 (2007): 417-435.

[38]

W. Lu, M. C. W. Chan, N. Zhu, C.-M. Che, C. Li, and Z. Hui, “Structural and Spectroscopic Studies on Pt···Pt and π−π Interactions in Luminescent Multinuclear Cyclometalated Platinum(II) Homologues Tethered by Oligophosphine Auxiliaries,” Journal of the American Chemical Society 126 (2004): 7639-7651.

[39]

S. R. Barzegar-Kiadehi, M. G. Haghighi, M. Jamshidi, and B. Notash, “Influence of the Diphosphine Coordination Mode on the Structural and Optical Properties of Cyclometalated Platinum(II) Complexes: An Experimental and Theoretical Study on Intramolecular Pt···Pt and π···π Interactions,” Inorganic Chemistry 57 (2018): 5060-5073.

[40]

M. E. Moustafa, P. D. Boyle, and R. J. Puddephatt, “Carbon-Hydrogen Versus Nitrogen-Oxygen Bond Activation in Reactions of N-Oxide Derivatives of 2,2′-Bipyridine and 1,10-Phenanthroline With a Dimethylplatinum(II) Complex,” Organometallics 33 (2014): 5402-5413.

[41]

S. Jamali, R. Czerwieniec, R. Kia, Z. Jamshidi, and M. Zabel, “Synthesis, Structure and Photophysical Properties of Binuclear Methylplatinum Complexes Containing Cyclometalating 2-Phenylpyridine or Benzo{h}Quinoline Ligands: A Comparison of Intramolecular Pt-Pt and π-π Interactions,” Dalton Transactions 40 (2011) 9123-9130.

[42]

Y.-M. Ho, N.-P. B. Au, K.-L. Wong, et al., “A Lysosome-Specific Two-Photon Phosphorescent Binuclear Cyclometalated Platinum(II) Probe for In Vivo Imaging of Live Neurons,” Chemical Communications 50 (2014): 4161-4163.

[43]

Q. Cao, X. Gan, J. Zhang, S. Chi, H. Li, and W. Fu, “Unprecedented 1D Mixed-Metal Polynuclear Cyclometalated Platinum Complexes: Synthesis, Structural Characterization and Spectroscopic Properties,” Chinese Journal of Chemistry 25 (2007): 1821-1826.

[44]

C.-K. Koo, B. Lam, S.-K. Leung, M. H.-W. Lam, and W.-Y. Wong, “A “Molecular Pivot-Hinge” Based on the pH-Regulated Intramolecular Switching of Pt−Pt and π−π Interactions,” Journal of the American Chemical Society 128 (2006): 16434-16435.

[45]

S.-W. Lai, M. C.-W. Chan, T.-C. Cheung, S.-M. Peng, and C.-M. Che, “Probing D8−D8 Interactions in Luminescent Mono- and Binuclear Cyclometalated Platinum(II) Complexes of 6-Phenyl-2,2′-Bipyridines,” Inorganic Chemistry 38 (1999): 4046-4055.

[46]

L.-Z. Wu, T.-C. Cheung, C.-M. Che, K.-K. Cheung, T.-C. Cheung, and M. H. W. Lam, “Dinuclear Cyclometallated Platinum(II) Complex as a Sensitive Luminescent Probe for SDS Micelles,” Chemical Communications (1998): 1127-1128.

[47]

T.-C. Cheung, K.-K. Cheung, S.-M. Peng, and C.-M. Che, “Photoluminescent Cyclometallated Diplatinum(II,II) Complexes: Photophysical Properties and Crystal Structures of [PtL(PPh3)]ClO4 and [Pt2L2(µ-dppm)][ClO4]2(HL = 6-Phenyl-2,2′-Bipyridine, dppm = Ph2PCH2PPh2),” Journal of the Chemical Society, Dalton Transactions (1996): 1645-1651.

[48]

C. Po, A. Y.-Y. Tam, K. M.-C. Wong, and V. W.-W. Yam, “Supramolecular Self-Assembly of Amphiphilic Anionic Platinum(II) Complexes: A Correlation Between Spectroscopic and Morphological Properties,” Journal of the American Chemical Society 133 (2011): 12136-12143.

[49]

C. Po and V. W.-W. Yam, “A Metallo-Amphiphile With Unusual Memory Behaviour: Effect of Temperature and Structure on the Self-Assembly of Triethylene Glycol (TEG)-Pendant Platinum(II) Bzimpy Complexes,” Chemical Science 5 (2014): 4868-4872.

[50]

L. Zhang, Y. Li, W. Che, et al., “AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles With Highly Enhanced Photodynamic Performance,” Advancement of Science 6 (2019): 1802050.

[51]

X. Wang, Q. Su, Z. Zhang, J. Yang, Y. Zhang, and M. Zhang, “Biotinylated Platinum(II) Metallacage Towards Targeted Cancer Theranostics,” Chemical Communications 56 (2020): 8460-8463.

[52]

L.-J. Chen, Y.-Y. Ren, N.-W. Wu, et al., “Hierarchical Self-Assembly of Discrete Organoplatinum(II) Metallacycles With Polysaccharide via Electrostatic Interactions and Their Application for Heparin Detection,” Journal of the American Chemical Society 137 (2015): 11725-11735.

[53]

K. S. Kisel, V. A. Baigildin, A. I. Solomatina, et al., “Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility,” Molecules 28 (2023): 348.

[54]

S. Perrier and P. Takolpuckdee, “Macromolecular Design via Reversible Addition-Fragmentation Chain Transfer (RAFT)/Xanthates (MADIX) Polymerization,” Journal of Polymer Science Part A: Polymer Chemistry 43 (2005): 5347-5393.

[55]

J. F. Gohy, “Block copolymer micelles,” Advances in Polymer Science 190 (2005): 65-136.

[56]

G. Riess, “Micellization of Block Copolymers,” Progress in Polymer Science 28 (2003): 1107-1170.

[57]

K. Nasouri, A. M. Shoushtari, and M. R. M. Mojtahedi, “Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent,” Advances in Polymer Technology 34 (2015): 21495.

[58]

L. Li, Z. Jiang, J. Xu, and T. Fang, “Predicting Poly(vinyl pyrrolidone)'s Solubility Parameter and Systematic Investigation of the Parameters of Electrospinning with Response Surface Methodology,” Journal of Applied Polymer Science 131 (2014): 40304.

[59]

K. A. Gebru and C. Das, “Effects of Solubility Parameter Differences Among PEG, PVP and CA on the Preparation of Ultrafiltration Membranes: Impacts of Solvents and Additives on Morphology, Permeability and Fouling Performances,” Chinese Journal of Chemical Engineering 25 (2017): 911-923.

[60]

A. Filimon and M.-D. Onofrei, “New Insights on Solvent Implications in the Design of Materials Based on Cellulose Derivatives Using Experimental and Theoretical Approaches,” Materials (Basel) 14 (2021): 6627.

[61]

D. W. Van Krevelen, K. Te Nijenhuis, “Properties of Polymers (Fourth Edition),” Amsterdam: Elsevier, (2009). https://www.sciencedirect.com/book/9780080548197/properties-of-polymers

[62]

A. A. Elistratova, I. S. Kritchenkov, A. A. Lezov, et al., “Lifetime Oxygen Sensors Based on Block Copolymer Micelles and Non-Covalent Human Serum Albumin Adducts Bearing Phosphorescent Near-Infrared Iridium(III) Complex,” European Polymer Journal 159 (2021): 110761.

[63]

V. N. Tsvetkov, P. N. Lavrenko, and S. V. Bushin, “Hydrodynamic Invariant of Polymer Molecules,” Journal of Polymer Science: Polymer Chemistry Edition 22 (1984): 3447-3486.

[64]

M. Grube, G. Cinar, U. S. Schubert, and I. Nischang, “Incentives of Using the Hydrodynamic Invariant and Sedimentation Parameter for the Study of Naturally- and Synthetically-Based Macromolecules in Solution,” Polymers 12 (2020): 277.

[65]

I. Perevyazko, A. S. Gubarev, and G. M. Pavlov, Molecular Characterization of Polymers (Amsterdam, the Netherlands: Elsevier, 2021).

[66]

A. S. Gubarev, A. A. Lezov, A. S. Senchukova, et al., “Diels-Alder Hyperbranched Pyridylphenylene Polymer Fractions as Alternatives to Dendrimers,” Macromolecules 52 (2019): 1882-1891.

[67]

H. Lu, F. Su, Q. Mei, et al., “Using Fluorine-Containing Amphiphilic Random Copolymers to Manipulate the Quantum Yields of Aggregation-Induced Emission Fluorophores in Aqueous Solutions and the Use of These Polymers for Fluorescent Bioimaging,” Journal of Materials Chemistry 22 (2012): 9890-9900.

[68]

Y. Li, T. M. Pritchett, P. Shao, J. E. Haley, H. Zhu, and W. Sun, “Excited-State Absorption of Mono-, Di- and Tri-Nuclear Cyclometalated Platinum 4,6-Diphenyl-2,2′-Bipyridyl Complexes,” Journal of Organometallic Chemistry 694 (2009): 3688-3691.

[69]

X.-P. Zhang, L.-L. Wang, X.-W. Qi, et al., “Pt⋯Pt Interaction Triggered Tuning of Circularly Polarized Luminescence Activity in Chiral Dinuclear Platinum(II) Complexes,” Dalton Transactions 47 (2018): 10179-10186.

[70]

K. H.-Y. Chan, H.-S. Chow, K. M.-C. Wong, M. C.-L. Yeung, and V. W.-W. Yam, “Towards Thermochromic and Thermoresponsive Near-Infrared (NIR) Luminescent Molecular Materials Through the Modulation of Inter- and/or Intramolecular Pt⋯Pt and π⋯π Interactions,” Chemical Science 1 (2010): 477-482.

[71]

K. T. Ly, R.-W. Chen-Cheng, H.-W. Lin, et al., “Near-Infrared Organic Light-Emitting Diodes With Very High External Quantum Efficiency and Radiance,” Nature Photonics 11 (2017): 63-68.

[72]

J. V. Caspar, E. M. Kober, B. P. Sullivan, and T. J. Meyer, “Application of the Energy Gap Law to the Decay of Charge-Transfer Excited States,” Journal of the American Chemical Society 104 (1982): 630-632.

[73]

J. V. Caspar and T. J. Meyer, “Application of the Energy Gap Law to Nonradiative, Excited-State Decay,” Journal of Physical Chemistry 87 (1983): 952-957.

[74]

D. Yan, Y. Qin, S. Yan, et al., “Near-Infrared Emissive AIE Nanoparticles for Biomedical Applications: From the Perspective of Different Nanocarriers,” Particuology 74 (2023): 103-118.

[75]

Q. Wan, X. Xiao, W. To, et al., “Counteranion- and Solvent-Mediated Chirality Transfer in the Supramolecular Polymerization of Luminescent Platinum(II) Complexes,” Angewandte Chemie International Edition 57 (2018): 17189-17193.

[76]

X.-S. Xiao, W. Lu, and C.-M. Che, “Phosphorescent Nematic Hydrogels and Chromonic Mesophases Driven by Intra- and Intermolecular Interactions of Bridged Dinuclear Cyclometalated Platinum(II) Complexes,” Chemical Science 5 (2014): 2482-2488.

[77]

Y.-C. Wei, S. F. Wang, Y. Hu, et al., “Overcoming the Energy Gap Law in Near-Infrared OLEDs by Exciton-Vibration Decoupling,” Nature Photonics 14 (2020): 570-577.

[78]

S.-F. Wang, B.-K. Su, et al., “Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window,” Nature Photonics 16 (2022): 843-850.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/