Cellulose-Based Switchable Circularly Polarized Light Emitter: Photo-Actuated Chiral Assemblies With Azobenzene Polymers

Wenye Sun , Bing Tian , Bang An , Rui Teng , Mingcong Xu , Chunhui Ma , Zhijun Chen , Haipeng Yu , Jian Li , Wei Li , Siqi Huan , Shouxin Liu , Orlando J. Rojas

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e712

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e712 DOI: 10.1002/agt2.712
RESEARCH ARTICLE

Cellulose-Based Switchable Circularly Polarized Light Emitter: Photo-Actuated Chiral Assemblies With Azobenzene Polymers

Author information +
History +
PDF

Abstract

Circularly polarized luminescent materials find extensive applications in 3D displays, information encryption, and photoinduced supramolecular chirality. However, controlling the handedness of circularly polarized luminescence remains a significant challenge in advancing optical technologies. In this study, we present a Janus circularly polarized light emitter comprising a fluorescent film combined with chiral nematic cellulose with switchable chirality. The emitter achieves maximum luminescence dissymmetry factors (0.28 and −0.65) through mode switching. In addition, we show the emitter's versatility in inducing chiral helices in azobenzene polymers with varying polar groups, resulting in significant chiral signals. Importantly, the chirality of these polymers can be switched by altering the luminescence mode of the emitter. These results are expected to facilitate the efficient design of chiral luminescent materials and photoinduction devices.

Keywords

cellulose nanocrystals / chirality / circularly polarized light / photo-alignment / supramolecular polymers

Cite this article

Download citation ▾
Wenye Sun, Bing Tian, Bang An, Rui Teng, Mingcong Xu, Chunhui Ma, Zhijun Chen, Haipeng Yu, Jian Li, Wei Li, Siqi Huan, Shouxin Liu, Orlando J. Rojas. Cellulose-Based Switchable Circularly Polarized Light Emitter: Photo-Actuated Chiral Assemblies With Azobenzene Polymers. Aggregate, 2025, 6(3): e712 DOI:10.1002/agt2.712

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Lu, M. Li, X. Gao, et al., “Cellulose Nanocrystal Films With NIR-II Circularly Polarized Light for Cancer Detection Applications,” ACS Nano 17 (2023): 461-471.

[2]

M. Sun, L. Xu, J. H. Bahng, et al., “Intracellular Localization of Nanoparticle Dimers by Chirality Reversal,” Nature Communications 8 (2017): 1847.

[3]

F. Gao, M. Sun, W. Ma, et al., “A Singlet Oxygen Generating Agent by Chirality/Dependent Plasmonic Shell Generating Agent by Ch,” Advanced Materials 29 (2017): 1606864.

[4]

C. Xue, Y. Jiang, H. X. Wang, et al., “Excitation-Dependent Circularly Polarized Luminescence From Helical Assemblies Based on Tartaric Acid Luminescence From Heli,” Angewandte Chemie 134 (2022): e202205633.

[5]

Q. Guo, M. Zhang, Z. Tong, et al., “Multimodal-Responsive Circularly Polarized Luminescence Security Materials,” Journal of the American Chemical Society 145 (2023): 4246-4253.

[6]

Z. Zheng, H. Hu, Z. Zhang, et al., “Digital Photoprogramming of Liquid-Crystal Superstructures Featuring Intrinsic Chiral Photoswitches,” Nature Photonics 16 (2022): 226-234.

[7]

X. Zhan, F. F. Xu, Z. Zhou, Y. Yan, J. Yao, and Y. S. Zhao, “3D Laser Displays Based on Circularly Polarized Lasing From Cholesteric Liquid Crystal Arrays,” Advanced Materials 33 (2021): 2104418.

[8]

J. Li, H. K. Bisoyi, J. Tian, J. Guo, and Q. Li, “Optically Rewritable Transparent Liquid Crystal Displays Enabled by Light-Driven Chiral Fluorescent Molecular Switches,” Advanced Materials 31 (2019): 1807751.

[9]

M. Zhang, Q. Guo, Z. Li, et al., “Processable Circularly Polarized Luminescence Material Enables Flexible Stereoscopic 3D Imaging,” Science Advances 9 (2023): eadi9944.

[10]

G. Varshney, S. Gotra, J. Kaur, V. S. Pandey, and R. S. Yaduvanshi, “Obtaining the Circular Polarization in a Nano-Dielectric Resonator Antenna for Photonics Applications,” Semiconductor Science and Technology 34 (2019): 07LT01.

[11]

T. Kawasaki, M. Sato, S. Ishiguro, et al., “Enantioselective Synthesis of Near Enantiopure Compound by Asymmetric Autocatalysis Triggered by Asymmetric Photolysis With Circularly Polarized Light,” Journal of the American Chemical Society 127 (2005): 3274-3275.

[12]

H. Chen, L. Yin, M. Liu, et al., “Aggregation-Induced Chiroptical Generation and Photoinduced Switching of Achiral Azobenzene-alt-Fluorene Copolymer Endowed with Left- and Right-Handed Helical Polysilanes,” RSC Advances 9 (2019): 4849-4856.

[13]

K. Wang, L. Yin, T. Miu, et al., “Design and Synthesis of a Novel Azobenzene-Containing Polymer Both in the Main- and Side-Chain Toward Unique Photocontrolled Isomerization Properties,” Materials Chemistry Frontiers 2 (2018): 1112-1118.

[14]

B. Sun, L. Ding, X. Wang, Z. Tu, and J. Fan, “Circularly Polarized Thermally Activated Delayed Fluorescence OLEDs With Nearly BT.2020 Red Emission,” Chemical Engineering Journal 476 (2023): 146511.

[15]

X. J. Liao, D. Pu, L. Yuan, et al., “Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence,” Angewandte Chemie International Edition 62 (2023): e202217045.

[16]

Y. Zhang, S. Yu, B. Han, et al., “Circularly Polarized Luminescence in Chiral Materials,” Matter 5 (2022): 837-875.

[17]

H. Yan, X. Yin, D. Wang, T. Han, and B. Z. Tang, “Synergistically Boosting the Circularly Polarized Luminescence of Functionalized Pillar[5]Arenes by Polymerization and Aggregation,” Advanced Science 10 (2023): 2305149.

[18]

J. Jiang, F. Ma, R. Dong, et al., “Aqueous Circularly Polarized Luminescence Induced by Homopolypeptide Self-Assembly,” Journal of the American Chemical Society 145 (2023): 27282-27294.

[19]

A. Tran, C. E. Boott, and M. J. MacLachlan, “Understanding the Self-Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials,” Advanced Materials 32 (2020): 1905876.

[20]

H. Al-Bustami, S. Belsey, T. Metzger, et al., “Spin-Induced Organization of Cellulose Nanocrystals,” Biomacromolecules 23 (2022): 2098-2105.

[21]

B. An, M. Xu, J. Sun, et al., “Cellulose Nanocrystals-Based Bio-Composite Optical Materials for Reversible Colorimetric Responsive Films and Coatings,” International Journal of Biological Macromolecules 233 (2023): 123600.

[22]

W. Fan, J. Li, L. Wei, and Y. Xu, “Carboxylated Cellulose Nanocrystal Films with Tunable Chiroptical Properties,” Carbohydrate Polymers 289 (2022): 119442.

[23]

S. N. Fernandes, P. L. Almeida, N. Monge, et al., “Mind the Microgap in Iridescent Cellulose Nanocrystal Films,” Advanced Materials 29 (2017): 1603560.

[24]

W. Li, M. Xu, C. Ma, et al., “Tunable Upconverted Circularly Polarized Luminescence in Cellulose Nanocrystal Based Chiral Photonic Films,” ACS Applied Materials & Interfaces 11 (2019): 23512-23519.

[25]

M. Xu, C. Ma, J. Zhou, et al., “Assembling Semiconductor Quantum Dots in Hierarchical Photonic Cellulose Nanocrystal Films: Circularly Polarized Luminescent Nanomaterials as Optical Coding Labels,” Journal of Materials Chemistry C 7 (2019): 13794-13802.

[26]

M. Xu, X. Wu, Y. Yang, et al., “Designing Hybrid Chiral Photonic Films With Circularly Polarized Room-Temperature Phosphorescence,” Acs Nano 14 (2020): 11130-11139.

[27]

M. Xu, G. Li, W. Li, et al., “Exploring the Circular Polarization Capacity From Chiral Cellulose Nanocrystal Films for a Photo-Controlled Chiral Helix of Supramolecular Polymers,” Angewandte Chemie International Edition 61 (2022): e202117042.

[28]

W. Sun, B. Tian, B. An, et al., “Chiroptical Cellulose Nanocrystal-Based Circularly Polarized Reflector and Filter for the Chiral Regulation of Photoresponsive Supramolecular Polymers,” ACS Applied Polymer Materials 6 (2024): 915-926.

[29]

C. L. C. Chan, M. M. Bay, G. Jacucci, et al., “Visual Appearance of Chiral Nematic Cellulose-Based Photonic Films: Angular and Polarization Independent Color Response With a Twist,” Advanced Materials 31 (2019): 1905151.

[30]

Y. Huang, Y. Qian, Y. Chang, et al., “Intense Left-Handed Circularly Polarized Luminescence in Chiral Nematic Hydroxypropyl Cellulose Composite Films,” Advanced Materials 36 (2024): 2308742.

[31]

D. Li, R. Jiang, S. Chen, et al., “Rapid, Linear, and Highly Reliable Structural-Color Switching Enabled by Thermal Regulation of Chiral Nematic Mesophases,” Chemical Engineering Journal 453 (2023): 139835.

[32]

C. H. Barty King, C. L. C. Chan, R. M. Parker, et al., “Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared From Hydroxypropyl Cellulose and Gelatin,” Advanced Materials 33 (2021): 2102112.

[33]

L. Huang, X. Zhang, L. Deng, Y. Wang, Y. Liu, and H. Zhu, “Sustainable Cellulose-Derived Organic Photonic Gels With Tunable and Dynamic Structural Color,” ACS Nano 18 (2024): 3627-3635.

[34]

S. Wang, Y. Qi, S. Wang, et al., “Coassembling Hydroxypropyl Cellulose Into a Chiral Nematic Composite and Patternization With a Photomask and Direct Ink Writing,” ACS Applied Polymer Materials 5 (2023): 9642-9649.

[35]

X. Zou, R. Xue, Z. An, et al., “Recent Advances in Flexible CNC-Based Chiral Nematic Film Materials,” Small 20 (2024): 2303778.

[36]

D. Qu, M. Archimi, A. Camposeo, D. Pisignano, and E. Zussman, “Circularly Polarized Laser with Chiral Nematic Cellulose Nanocrystal Cavity,” ACS Nano 15 (2021): 8753-8760.

[37]

Y. Zhang, S. Yu, B. Han, et al., “Circularly Polarized Luminescence in Chiral Materials,” Matter 5 (2022): 837-875.

[38]

X. Cheng, T. Miao, Y. Ma, X. Zhu, W. Zhang, and X. Zhu, “Controlling the Multiple Chiroptical Inversion in Biphasic Liquidtal Cavitye Composite,” Angewandte Chemie International Edition 60 (2021): 24430-24436.

[39]

Z. Zheng, Z. Su, L. Wang, J. Xu, Q. Zhang, and J. Yang, “Photoinduced Chirality in Achiral Liquid Crystalline Azobenzene Polymers Containing Different Polar Side Groups,” European Polymer Journal 43 (2007): 2738-2744.

[40]

M. Ivanov, I. Naydenova, T. Todorov, et al., “Light-Induced Optical Activity in Optically Ordered Amorphous Side-Chain Azobenzene Containing Polymer,” Journal of Modern Optics 47 (2000): 861-867.

[41]

Y. Li, B. Xue, J. Yang, et al., “Azobenzene as a Photoswitchable Mechanophore,” Nature Chemistry 16 (2024): 446-455.

[42]

T. Ikeda and O. Tsutsumi, “Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films,” Science 268 (1995): 1873-1875.

[43]

L. Yin, Y. Zhao, M. Liu, N. Zhou, W. Zhang, and X. Zhu, “Induction of Supramolecular Chirality by Chiral Solvation in Achiral Azo Polymers With Different Spacer Lengths and Push-Pull Electronic Substituents: Where Will Chiral Induction Appear?” Polymer Chemistry 8 (2017): 1906-1913.

[44]

C. Ren, W. Sun, T. Zhao, C. Li, C. Jiang, and P. Duan, “A Single36 Chemie I Emitter Enabled Superstructural Helix Inversion for Upconverting and Downshifting Luminescence With Bidirectional Circular Polarization,” Angewandte Chemie International Edition 62 (2023): e202315136.

[45]

Q. Wang, Q. Zhang, Q. Zhang, et al., “Color-Tunable Single-Fluorophore Supramolecular System With Assembly-Encoded Emission,” Nature Communications 11 (2020): 158.

[46]

C. Du, Z. Li, X. Zhu, G. Ouyang, and M. Liu, “Hierarchically Self-Assembled Homochiral Helical Microtoroids,” Nature Nanotechnology 17 (2022): 1294-1302.

[47]

K. Ma, W. Chen, T. Jiao, et al., “Boosting the Circularly Polarized Luminescence of Small Organic Molecules Via Multi-Dimensional Morphology Control,” Chemical Science 10 (2019): 6821-6827.

[48]

Y. He, S. Lin, J. Guo, and Q. Li, “Circularly Polarized Luminescent Self-Organized Helical Superstructures: From Materials and Stimulus-Responsiveness to Applications,” Aggregate 2 (2021): e141.

[49]

S. Li, Y. Tang, Q. Fan, et al., “When Quantum Dots Meet Blue Phase Liquid Crystal Elastomers: Visualized Full-Color and Mechanically-Switchable Circularly Polarized Luminescence,” Light: Science & Applications 13 (2024): 140.

[50]

Y. Zhou, Y. Wang, Y. Song, et al., “Helical-caging Enables Single-emitted Large Asymmetric Full-color Circularly Polarized Luminescence,” Nature Communications 15 (2024): 251.

[51]

S. Yoshida, S. Morikawa, K. Ueda, K. Kaneko, T. Hanasaki, and K. Akagi, “Helicity Control of Circularly Polarized Luminescence from Aromatic Conjugated Copolymers and Their Mixture Using Reversibly Photoinvertible Chiral Liquid Crystals,” ACS Applied Materials & Interfaces 16 (2024): 3991-4002.

[52]

S. Jiang, Y. Zhao, and L. Wang, “Photocontrollable Induction of Supramolecular Chirality in Achiral Side Chain Azo-Containing Polymers Through Preferential Chiral Solvation,” Polymer Chemistry 6 (2015): 4230-4239.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/