Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects

Nadezhda A. Pechnikova , Kalliopi Domvri , Konstantinos Porpodis , Maria S. Istomina , Aleksandra V. Iaremenko , Alexey V. Yaremenko

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e707

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e707 DOI: 10.1002/agt2.707
REVIEW

Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects

Author information +
History +
PDF

Abstract

Carbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard-to-reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long-term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.

Keywords

bioimaging / biomedical applications / biosensing / carbon quantum dots / drug delivery / phototherapy

Cite this article

Download citation ▾
Nadezhda A. Pechnikova, Kalliopi Domvri, Konstantinos Porpodis, Maria S. Istomina, Aleksandra V. Iaremenko, Alexey V. Yaremenko. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. Aggregate, 2025, 6(3): e707 DOI:10.1002/agt2.707

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

V. Magesh, A. K. Sundramoorthy, and D. Ganapathy, “Recent Advances on Synthesis and Potential Applications of Carbon Quantum Dots,” Frontiers in Materials 9 (2022): 906838.

[2]

N. Azam, M. Najabat Ali, and T. Javaid Khan, “Carbon Quantum Dots for Biomedical Applications: Review and Analysis,” Frontiers in Materials 8 (2021): 700403.

[3]

S. Dua, P. Kumar, B. Pani, A. Kaur, M. Khanna, and G. Bhatt, “Stability of Carbon Quantum Dots: A Critical Review,” RSC Advances 13 (2023): 13845.

[4]

L. Tang, R. Ji, X. Cao, et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano 6 (2012): 5102-5110.

[5]

P. Kumar, S. Dua, R. Kaur, M. Kumar, and G. Bhatt, “A Review on Advancements in Carbon Quantum Dots and Their Application in Photovoltaics,” RSC Advances 12 (2022): 4714-4759.

[6]

Y. Shi, Y. Zhang, Z. Wang, et al., “Onion-Like Multicolor Thermally Activated Delayed Fluorescent Carbon Quantum Dots for Efficient Electroluminescent Light-Emitting Diodes,” Nature Communications 15 (2024): 3043.

[7]

T. Yuan, F. Yuan, L. Sui, et al., “Carbon Quantum Dots With near-Unity Quantum Yield Bandgap Emission for Electroluminescent Light-Emitting Diodes,” Angewandte Chemie International Edition 62 (2023): e202218568.

[8]

T. Meng, Z. Wang, T. Yuan, et al., “Gram-Scale Synthesis of Highly Efficient Rare-Earth-Element-Free Red/Green/Blue Solid-State Bandgap Fluorescent Carbon Quantum Rings for White Light-Emitting Diodes,” Angewandte Chemie International Edition 60 (2021): 16343-16348.

[9]

Y. Shi, Y. Gong, Y. Zhang, et al., “Axially Growing Carbon Quantum Ribbon With 2D Stacking Control for High-Stability Solar Cell,” Advanced Science 11 (2024): 2400817.

[10]

B. Zhang, C. Y. Liu, and Y. Liu, “A Novel One-Step Approach to Synthesize Fluorescent Carbon Nanoparticles,” European Journal of Inorganic Chemistry 2010 (2010): 4411-4414.

[11]

M. Li, T. Chen, J. J. Gooding, and J. Liu, “Review of Carbon and Graphene Quantum Dots for Sensing,” ACS Sensors 4 (2019): 1732-1748.

[12]

S. Campuzano, P. Yáñez-Sedeño, and J. M. Pingarrón, “Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing,” Nanomaterials 9 (2019): 634.

[13]

Y. Yan, J. Gong, J. Chen, et al., “Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications,” Advanced Materials 31 (2019): 1808283.

[14]

A. Sciortino, A. Cannizzo, and F. Messina, “Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response,” C-Journal of Carbon Research 4 (2018): 67.

[15]

M. Verma, Y. H. Chan, S. Saha, and M. H. Liu, “Recent Developments in Semiconducting Polymer Dots for Analytical Detection and NIR-II Fluorescence Imaging,” ACS Applied Bio Materials 4 (2021): 2142-2159.

[16]

Z. Zhang, C. Yu, Y. Wu, et al., “Semiconducting Polymer Dots for Multifunctional Integrated Nanomedicine Carriers,” Materials Today Bio 26 (2024): 101028.

[17]

S. Das, S. Mondal, and D. Ghosh, “Carbon Quantum Dots in Bioimaging and Biomedicines,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1333752.

[18]

Y. Wang and A. Hu, “Carbon Quantum Dots: Synthesis, Properties and Applications,” Journal of Materials Chemistry C 2 (2014): 6921-6939.

[19]

J. Kong, Y. Wei, F. Zhou, et al., “Carbon Quantum Dots: Properties, Preparation, and Applications,” Molecules 29 (2024): 2002. .

[20]

X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications,” Small 11 (2015): 1620-1636.

[21]

X. Xu, R. Ray, Y. Gu, et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society 126 (2004): 12736-12737.

[22]

Y. P. Sun, B. Zhou, Y. Lin, et al., “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence,” Journal of the American Chemical Society 128 (2006): 7756-7757.

[23]

B. Gayen, S. Palchoudhury, and J. Chowdhury, “Carbon Dots: A Mystic Star in the World of Nanoscience,” Journal of Nanomaterials 2019 (2019): 3451307.

[24]

A. Karagianni, N. G. Tsierkezos, M. Prato, M. Terrones, and K. V. Kordatos, “Application of Carbon-Based Quantum Dots in Photodynamic Therapy,” Carbon 203 (2023): 273-310.

[25]

H. Wang, S. Yang, L. Chen, et al., “Tumor Diagnosis Using Carbon-Based Quantum Dots: Detection Based on the Hallmarks of Cancer,” Bioactive Materials 33 (2024): 174-222.

[26]

M. Pan, X. Xie, K. Liu, J. Yang, L. Hong, and S. Wang, “Fluorescent Carbon Quantum Dots—Synthesis, Functionalization and Sensing Application in Food Analysis,” Nanomaterials 10 (2020): 930.

[27]

A. Łoczechin, K. Séron, A. Barras, et al., “Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus,” ACS Applied Materials & Interfaces 11 (2019): 42964-42974.

[28]

A. H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, and M. Pumera, “Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection,” ACS Applied Materials & Interfaces 8 (2016): 1951-1957.

[29]

M. J. Molaei, “Principles, Mechanisms, and Application of Carbon Quantum Dots in Sensors: A Review,” Analytical Methods 12 (2020): 1266-1287.

[30]

M. Kumar, S. Chinnathambi, N. Bakhori, et al., “Biomass-Derived Carbon Dots as Fluorescent Quantum Probes to Visualize and Modulate Inflammation,” Scientific Reports 14 (2024): 12665.

[31]

Y. Xu, B. Wang, M. Zhang, et al., “Carbon Dots as a Potential Therapeutic Agent for the Treatment of Cancer-Related Anemia,” Advanced Materials 34 (2022): 2200905.

[32]

B. Wang, H. Cai, G. I. N. Waterhouse, X. Qu, B. Yang, and S. Lu, “Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review,” Small Science 2 (2022): 2200012.

[33]

Y. Li, Z. Li, X. Wang, et al., “In Vivo Cancer Targeting and Imaging-Guided Surgery With Near Infrared-Emitting Quantum Dot Bioconjugates,” Theranostics 2 (2012): 769-776.

[34]

S. Yang, J. Sun, X. Li, et al., “Large-Scale Fabrication of Heavy Doped Carbon Quantum Dots With Tunable-Photoluminescence and Sensitive Fluorescence Detection,” Journal of Materials Chemistry A 2 (2014): 8660-8667.

[35]

M. X. Gao, L. Yang, Y. Zheng, et al., ““Click” on Alkynylated Carbon Quantum Dots: An Efficient Surface Functionalization for Specific Biosensing and Bioimaging,” Chemistry—A European Journal 23 (2017): 2171-2178.

[36]

M. Pourmadadi, E. Rahmani, M. Rajabzadeh-Khosroshahi, et al., “Properties and Application of Carbon Quantum Dots (CQDs) in Biosensors for Disease Detection: A Comprehensive Review,” Journal of Drug Delivery Science and Technology 80 (2023): 104156.

[37]

Y. Xue, C. Liu, G. Andrews, J. Wang, and Y. Ge, “Recent Advances in Carbon Quantum Dots for Virus Detection, as Well as Inhibition and Treatment of Viral Infection,” Nano Convergence 9 (2022): 15.

[38]

Z. Peng, X. Han, S. Li, et al., “Carbon Dots: Biomacromolecule Interaction, Bioimaging and Nanomedicine,” Coordination Chemistry Reviews 343 (2017): 256-277.

[39]

B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li, and Y. Tian, “Carbon Dot-Based Inorganic-Organic Nanosystem for Two-Photon Imaging and Biosensing of pH Variation in Living Cells and Tissues,” Advanced Materials 24 (2012): 5844-5848.

[40]

N. Sarkar, G. Sahoo, R. Das, G. Prusty, and S. K. Swain, “Carbon Quantum Dot Tailored Calcium Alginate Hydrogel for pH Responsive Controlled Delivery of Vancomycin,” European Journal of Pharmaceutical Sciences 109 (2017): 359-371.

[41]

S. Lu, G. Li, Z. Lv, et al., “Facile and Ultrasensitive Fluorescence Sensor Platform for Tumor Invasive Biomaker β-glucuronidase Detection and Inhibitor Evaluation With Carbon Quantum Dots Based on Inner-Filter Effect,” Biosensors & Bioelectronics 85 (2016): 358-362.

[42]

M. Fang, L. Lin, M. Zheng, W. Liu, and R. Lin, “Antibacterial Functionalized Carbon Dots and Their Application in Bacterial Infections and Inflammation,” Journal of Materials Chemistry B 11 (2023): 9386-9403.

[43]

A. M. Wagner, J. M. Knipe, G. Orive, and N. A. Peppas, “Quantum Dots in Biomedical Applications,” Acta Biomaterialia 94 (2019): 44-63.

[44]

K. O. Boakye-Yiadom, S. Kesse, Y. Opoku-Damoah, et al., “Carbon Dots: Applications in Bioimaging and Theranostics,” International Journal of Pharmaceutics 564 (2019): 308-317.

[45]

M. J. Cho and S. Y. Park, “Carbon-dot-based Ratiometric Fluorescence Glucose Biosensor,” Sensors & Actuators, B: Chemical 282 (2019): 719-729.

[46]

Y. Li, X. Zheng, X. Zhang, et al., “Porphyrin-Based Carbon Dots for Photodynamic Therapy of Hepatoma,” Advanced Healthcare Materials 6 (2017): 1600924.

[47]

S. Chen, T. Sun, M. Zheng, and Z. Xie, “Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy,” Advanced Functional Materials 30 (2020): 2004680.

[48]

J. Yue, L. Li, C. Jiang, Q. Mei, W. F. Dong, and R. Yan, “Riboflavin-Based Carbon Dots With High Singlet Oxygen Generation for Photodynamic Therapy,” Journal of Materials Chemistry B 9 (2021): 7972-7978.

[49]

B. Wang, G. I. N. Waterhouse, B. Yang, and S. Lu, “Advances in Shell and Core Engineering of Carbonized Polymer Dots for Enhanced Applications,” Accounts of Chemical Research 57 (2024): 2928-2939.

[50]

L. Zhang, X. Yang, Z. Yin, and L. Sun, “A Review on Carbon Quantum Dots: Synthesis, Photoluminescence Mechanisms and Applications,” Luminescence 37 (2022): 1612-1638.

[51]

X. Yang, S. Fu, A. H. Basta, and L. Lucia, “A True Biomass Standout: Preparation and Application of Biomass-Derived Carbon Quantum Dots,” Bioresources 19 (2024), 6838-6858.

[52]

B. K. John, J. Mathew, K. Sreekanth, sand B. Mathew, “Biomass Derived Carbon Quantum Dots as a Versatile Platform for Fluorescent Sensing, Catalytic Reduction, Fluorescent Ink and Anticancer Agents,” Materials Today Sustainability 26 (2024): 100715.

[53]

S. E. Elugoke, G. E. Uwaya, T. W. Quadri, and E. E. Ebenso, “Carbon Quantum Dots: Basics, Properties, and Fundamentals,” ACS Symposium Series 1465 (2024): 3-42.

[54]

H. Peng and J. Travas-Sejdic, “Simple Aqueous Solution Route to Luminescent Carbogenic Dots From Carbohydrates,” Chemistry of Materials 21 (2009): 5563-5565.

[55]

M. Lan, S. Zhao, Z. Zhang, et al., “Two-Photon-Excited Near-Infrared Emissive Carbon Dots as Multifunctional Agents for Fluorescence Imaging and Photothermal Therapy,” Nano Research 10 (2017): 3113-3123.

[56]

W. Fu, J. Yin, H. Cao, et al., “Non-Blinking Luminescence From Charged Single Graphene Quantum Dots,” Advanced Materials 35 (2023): 2304074.

[57]

E. Berdimurodov, D. K. Verma, and L. Guo, “Carbon Dots: Recent Developments and Future Perspectives,” American Chemical Society, (Web) 1465 (2024).

[58]

Z. Slanina, F. Uhlík, X. Lu, et al., “Calculations of the Water-Dimer Encapsulations Into C84,” Fullerenes, Nanotubes and Carbon Nanostructures 24 (2016): 1-7.

[59]

K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, and H. Lin, “Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting,” Angewandte Chemie International Edition 55 (2016): 7231-7235.

[60]

F. Li, Y. Li, X. Yang, et al., “Highly Fluorescent Chiral N-S-Doped Carbon Dots From Cysteine: Affecting Cellular Energy Metabolism,” Angewandte Chemie International Edition 57 (2018): 2377-2382.

[61]

S. Anwar, H. Ding, M. Xu, et al., “Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots,” ACS Applied Bio Materials 2 (2019): 2317-2338.

[62]

D. Li, E. V. Ushakova, A. L. Rogach, and S. Qu, “Optical Properties of Carbon Dots in the Deep-Red to Near-Infrared Region Are Attractive for Biomedical Applications,” Small 17 (2021): 2102325.

[63]

Y. Liu, J. H. Lei, G. Wang, et al., “Toward Strong Near-Infrared Absorption/Emission From Carbon Dots in Aqueous Media Through Solvothermal Fusion of Large Conjugated Perylene Derivatives With Post-Surface Engineering,” Advanced Science 9 (2022): 2202283.

[64]

Q. Wang, T. Zhang, Q. Cheng, et al., “Combination of Efficient Red Fluorescence and High Photothermal Conversion in the Second Near-Infrared Window From Carbon Dots Through Photoinduced Sodium-Doping Approach,” Advanced Functional Materials 34 (2024): 2402976.

[65]

L. Wang, Z. G. Wang, D. Ning, Y. Hu, S. L. Liu, and D. W. Pang, “Real-Time Monitoring of Biomolecular Dynamics on Cell Membranes by Quantum Dot-Based Multicolor Electrochemiluminescence,” Nano Today 50 (2023): 101855.

[66]

J. R. Adsetts, S. Hoesterey, C. Gao, D. A. Love, and Z. Ding, “Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching, and Interfacial Reactions,” Langmuir 36 (2020): 14432-14442.

[67]

C. Zhang, F. Zhu, H. Xu, et al., “Significant Improvement of Near-UV Electroluminescence From ZnO Quantum Dot LEDs via Coupling With Carbon Nanodot Surface Plasmons,” Nanoscale 9 (2017): 14592-14601.

[68]

M. T. Hasan, R. Gonzalez-Rodriguez, C. Ryan, N. Faerber, J. L. Coffer, and A. V. Naumov, “Photo-and Electroluminescence From Nitrogen-Doped and Nitrogen-Sulfur Codoped Graphene Quantum Dots,” Advanced Functional Materials 28 (2018): 1804337.

[69]

J. Xu, Y. Miao, J. Zheng, Y. Yang, and X. Liu, “Ultrahigh Brightness Carbon Dot-Based Blue Electroluminescent LEDs by Host-Guest Energy Transfer Emission Mechanism,” Advanced Optical Materials 6 (2018): 1800181.

[70]

L. Wang, W. Li, L. Yin, et al., “Full-Color Fluorescent Carbon Quantum Dots,” Science Advances 6 (2020).

[71]

S. Sun, J. Chen, K. Jiang, et al., “Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power,” ACS Applied Materials & Interfaces 11 (2019): 5791-5803.

[72]

S. T. Yang, L. Cao, P. G. Luo, et al., “Carbon Dots for Optical Imaging in Vivo,” Journal of the American Chemical Society 131 (2009): 11308-11309.

[73]

T. Pons, S. Bouccara, V. Loriette, N. Lequeux, S. Pezet, and A. Fragola, “Vivo Imaging of Single Tumor Cells in Fast-Flowing Bloodstream Using Near-Infrared Quantum Dots and Time-Gated Imaging,” ACS Nano 13 (2019): 3125-3131.

[74]

K. Soumya, N. More, M. Choppadandi, D. A. Aishwarya, G. Singh, and G. Kapusetti, “A Comprehensive Review on Carbon Quantum Dots as an Effective Photosensitizer and Drug Delivery System for Cancer Treatment,” Biomedical Technology 4 (2023): 11-20.

[75]

H. Kaurav, D. Verma, A. Bansal, D. N. Kapoor, and S. Sheth, “Progress in Drug Delivery and Diagnostic Applications of Carbon Dots: A Systematic Review,” Frontiers in Chemistry 11 (2023): 1227843.

[76]

H. M. Gil, T. W. Price, K. Chelani, J. S. G. Bouillard, S. D. J. Calaminus, and G. J. Stasiuk, "NIR-Quantum Dots in Biomedical Imaging and Their Future," iscience 24 (2021), 102189.

[77]

H. Yi, W. Lu, F. Liu, et al., “ROS-Responsive Liposomes With NIR Light-Triggered Doxorubicin Release for Combinatorial Therapy of Breast Cancer,” Journal of Nanobiotechnology 19 (2021): 134.

[78]

Z. Tang, K. Jiang, S. Sun, S. Qian, Y. Wang, and H. Lin, “A Conjugated Carbon-Dot-Tyrosinase Bioprobe for Highly Selective and Sensitive Detection of Dopamine,” Analyst 144 (2019): 468-473.

[79]

W. Nawrot, K. Drzozga, S. Baluta, J. Cabaj, and K. Malecha, “A Fluorescent Biosensors for Detection Vital Body Fluids' Agents,” Sensors 18 (2018): 2357.

[80]

M. Cheng, Y. Liu, Q. You, et al., “Metal-Doping Strategy for Carbon-Based Sonosensitizer in Sonodynamic Therapy of Glioblastoma,” Advanced Science 11 (2024): 2404230.

[81]

D. Bouzas-Ramos, J. Cigales Canga, J. C. Mayo, R. M. Sainz, J. Ruiz Encinar, and J. M. Costa-Fernandez, “Carbon Quantum Dots Codoped With Nitrogen and Lanthanides for Multimodal Imaging,” Advanced Functional Materials 29 (2019): 1903884.

[82]

A. M. Smith, M. C. Mancini, and S. Nie, “Second Window for in Vivo Imaging,” Nature Nanotechnology 4 (2009): 710-711.

[83]

H. L. Yang, L. F. Bai, Z. R. Geng, et al., “Carbon Quantum Dots: Preparation, Optical Properties, and Biomedical Applications,” Materials Today Advances 18 (2023): 100376.

[84]

S. Sharma, S. Batra, M. K. Chauhan, and V. Kumar, “Photothermal Therapy for Cancer Treatment,” Targeted Cancer Therapy in Biomedical Engineering (2023): 755-780.

[85]

A. P. Bhat, S. J. Dhoble, and K. G. Rewatkar, “Medical Applications of Quantum Dots,” Graphene, Nanotubes and Quantum Dots-Based Nanotechnology: Fundamentals and Applications (2022): 803-836.

[86]

D. Korolev, M. Istomina, A. Belorus, et al., “Fluorescent Nanoagents for Biomedical Applications,” Fluorescence Methods for Investigation of Living Cells and Microorganisms (2020).

[87]

M. J. Molaei, “Carbon Quantum Dots and Their Biomedical and Therapeutic Applications: A Review,” RSC Advances 9 (2019): 6460-6481.

[88]

J. Liu, R. Li, and B. Yang, “Carbon Dots: A New Type of Carbon-Based Nanomaterial With Wide Applications,” ACS Central Science 6 (2020): 2179-2195.

[89]

H. Kuznietsova, A. Géloën, N. Dziubenko, et al., “In Vitro and in Vivo Toxicity of Carbon Dots With Different Chemical Compositions,” Discover Nano 18 (2023): 111.

[90]

Y. C. Chen, H. H. Chen, H. J. Lin, et al., “Hepatotoxicity Evaluations of Different Surface Charged Carbon Quantum Dots in Vivo and in Vitro,” Colloids and Surfaces B: Biointerfaces 234 (2024): 113760.

[91]

Z. T. Rosenkrans, T. Sun, D. Jiang, et al., “Selenium-Doped Carbon Quantum Dots Act as Broad-Spectrum Antioxidants for Acute Kidney Injury Management,” Advanced Science 7 (2020): 2000420.

[92]

U. Badıllı, F. Mollarasouli, N. K. Bakirhan, Y. Ozkan, and S. A. Ozkan, “Role of Quantum Dots in Pharmaceutical and Biomedical Analysis, and Its Application in Drug Delivery,” TrAC Trends in Analytical Chemistry 131 (2020): 116013.

[93]

N. J. Hunt, G. P. Lockwood, S. W. S. Kang, et al., “Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice,” ACS Nano 15 (2021): 4710-4727.

[94]

H. J. Wang, X. He, T. Y. Luo, J. Zhang, Y. H. Liu, and X. Q. Yu, “Amphiphilic Carbon Dots as Versatile Vectors for Nucleic Acid and Drug Delivery,” Nanoscale 9 (2017): 5935-5947.

[95]

X. Dong, W. Liang, M. J. Meziani, Y. P. Sun, and L. Yang, “Carbon Dots as Potent Antimicrobial Agents,” Theranostics 10 (2020): 671-686.

[96]

H. H. Chen, C. J. Lin, A. Anand, et al., “Development of Antiviral Carbon Quantum Dots That Target the Japanese Encephalitis Virus Envelope Protein,” Journal of Biological Chemistry 298 (2022): 101957.

[97]

R. M. El-Shabasy, M. F. Elsadek, B. M. Ahmed, M. F. Farahat, K. M. Mosleh, and M. M. Taher, “Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications,” Processes 9 (2021): 388.

[98]

A. Kalkal, R. Pradhan, S. Kadian, G. Manik, and G. Packirisamy, “Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor Toward Efficient Detection of Small Cell Lung Cancer,” ACS Applied Bio Materials 3 (2020): 4922-4932.

[99]

S. G. Ryan, M. N. Butler, S. S. Adeyemi, et al., “Imaging of X-Ray-Excited Emissions From Quantum Dots and Biological Tissue in Whole Mouse,” Scientific Reports 9 (2019): 19223.

[100]

X. Liu, G. B. Braun, M. Qin, E. Ruoslahti, and K. N. Sugahara, “In Vivo Cation Exchange in Quantum Dots for Tumor-Specific Imaging,” Nature Communications 8 (2017): 343.

[101]

Z. G. Wang, Y. Hu, H. Y. Liu, H. Y. Wen, B. P. Qi, and S. L. Liu, “Electrochemiluminescence-Based Single-Particle Tracking of the Biomolecules Moving Along Intercellular Membrane Nanotubes Between Live Cells,” Analytical Chemistry 96 (2024): 7231-7239.

[102]

J. H. Duarte, “DNA Cages Target Quantum Dots,” Nature Biotechnology 34 (2016): 1036.

[103]

S. Karmakar, T. Kanti Das, and A. Saha, “Ultra-Low Level Detection of Biomarker Bilirubin by Graphene Quantum Dots and Bovine Serum Albumin Enabled Turn-on Sensing,” Microchemical Journal 204 (2024): 111045.

[104]

L. Sun, Y. Zhao, H. Peng, et al., “Carbon Dots as a Novel Photosensitizer for Photodynamic Therapy of Cancer and Bacterial Infectious Diseases: Recent Advances,” Journal of Nanobiotechnology 22 (2024): 210.

[105]

L. N. Wu, Y. J. Yang, L. X. Huang, et al., “Levofloxacin-Based Carbon Dots to Enhance Antibacterial Activities and Combat Antibiotic Resistance,” Carbon 186 (2022): 452-464.

[106]

C. Zhao, X. Wang, L. Wu, et al., “Nitrogen-Doped Carbon Quantum Dots as an Antimicrobial Agent Against Staphylococcus for the Treatment of Infected Wounds,” Colloids and Surfaces B, Biointerfaces 179 (2019): 17-27.

[107]

Y. Chen, P. Huang, Y. Wu, and C. Liu, “Antimicrobial Activity and Mechanisms of Carbon Quantum Dot Decorated Modified Zinc Oxide Nanoparticles Against Oral Pathogenic Bacteria,” Results in Chemistry 9 (2024): 101655.

[108]

P. Li, L. Sun, S. Xue, et al., “Recent Advances of Carbon Dots as New Antimicrobial Agents,” SmartMat 3 (2022): 226-248.

[109]

A. Sharma, H. K. Choi, and H. J. Lee, “Carbon Dots for the Treatment of Inflammatory Diseases: An Appraisal of in Vitro and in Vivo Studies,” Oxidative Medicine and Cellular Longevity 2023 (2023): 3076119.

[110]

A. Pandey, A. Devkota, Z. Yadegari, K. Dumenyo, and A. Taheri, “Antibacterial Properties of Citric Acid/β-Alanine Carbon Dots Against Gram-Negative Bacteria,” Nanomaterials 11 (2021): 2012.

[111]

M. Ghirardello, J. Ramos-Soriano, and M. C. Galan, “Carbon Dots as an Emergent Class of Antimicrobial Agents,” Nanomaterials 11 (2021): 1877.

[112]

X. Chu, F. Wu, B. Sun, et al., “Genipin Cross-Linked Carbon Dots for Antimicrobial, Bioimaging and Bacterial Discrimination,” Colloids and Surfaces. B, Biointerfaces 190 (2020): 110930.

[113]

A. Saravanan, M. Maruthapandi, P. Das, et al., “Applications of N-Doped Carbon Dots as Antimicrobial Agents, Antibiotic Carriers, and Selective Fluorescent Probes for Nitro Explosives,” ACS Applied Bio Materials 3 (2020): 8023-8031.

[114]

S. Demirci, A. B. McNally, R. S. Ayyala, L. B. Lawson, and N. Sahiner, “Synthesis and Characterization of Nitrogen-Doped Carbon Dots as Fluorescent Nanoprobes With Antimicrobial Properties and Skin Permeability,” Journal of Drug Delivery Science and Technology 59 (2020): 101889.

[115]

H. Koulivand, A. Shahbazi, V. Vatanpour, and M. Rahmandoost, “Novel Antifouling and Antibacterial Polyethersulfone Membrane Prepared by Embedding Nitrogen-Doped Carbon Dots for Efficient Salt and Dye Rejection,” Materials Science and Engineering: C 111 (2020): 110787.

[116]

M. Yu, P. Li, R. Huang, et al., “Antibacterial and Antibiofilm Mechanisms of Carbon Dots: A Review,” Journal of Materials Chemistry B 11 (2023): 734-754.

[117]

D. Zhao, Z. Zhang, X. Liu, R. Zhang, and X. Xiao, “Rapid and Low-Temperature Synthesis of N, P co-doped Yellow Emitting Carbon Dots and Their Applications as Antibacterial Agent and Detection Probe to Sudan Red I,” Materials Science and Engineering: C 119 (2021): 111468.

[118]

J. C. Kung, I. T. Tseng, C. S. Chien, S. H. Lin, C. C. Wang, and C. J. Shih, “Microwave Assisted Synthesis of Negative-Charge Carbon Dots With Potential Antibacterial Activity Against Multi-Drug Resistant Bacteria,” RSC Advances 10 (2020): 41202-41208.

[119]

Z. Ye, G. Li, J. Lei, M. Liu, Y. Jin, and B. Li, “One-Step and One-Precursor Hydrothermal Synthesis of Carbon Dots With Superior Antibacterial Activity,” ACS Applied Bio Materials 3 (2020): 7095-7102.

[120]

M. P. Romero, F. Alves, M. D. Stringasci, et al., “One-Pot Microwave-Assisted Synthesis of Carbon Dots and in Vivo and in Vitro Antimicrobial Photodynamic Applications,” Frontiers in Microbiology 12 (2021): 662149.

[121]

B. Sun, F. Wu, Q. Zhang, et al., “Insight Into the Effect of Particle Size Distribution Differences on the Antibacterial Activity of Carbon Dots,” Journal of Colloid & Interface Science 584 (2021): 505-519.

[122]

J. Liang, W. Li, J. Chen, et al., “Antibacterial Activity and Synergetic Mechanism of Carbon Dots Against Gram-Positive and -Negative Bacteria,” ACS Applied Bio Materials 4 (2021): 6937-6945.

[123]

A. Saravanan, M. Maruthapandi, P. Das, J. H. T. Luong, and A. Gedanken, “Green Synthesis of Multifunctional Carbon Dots With Antibacterial Activities,” Nanomaterials 11 (2021): 369.

[124]

M. Z. Fahmi, W. Sukmayani, S. Q. Khairunisa, et al., “Design of Boronic Acid-Attributed Carbon Dots on Inhibits HIV-1 Entry,” RSC Advances 6 (2016): 92996-93002.

[125]

S. Kotta, H. M. Aldawsari, S. M. Badr-Eldin, et al., “Exploring the Potential of Carbon Dots to Combat COVID-19,” Frontiers in Molecular Biosciences 7 (2020), 616575.

[126]

P. Garg, S. Sangam, D. Kochhar, S. Pahari, C. Kar, and M. Mukherjee, “Exploring the Role of Triazole Functionalized Heteroatom co-doped Carbon Quantum Dots Against Human Coronaviruses,” Nano Today 35 (2020): 101001.

[127]

Y. Y. Aung, A. N. Kristanti, S. Q. Khairunisa, N. Nasronudin, and M. Z. Fahmi, “Inactivation of HIV-1 Infection Through Integrative Blocking With Amino Phenylboronic Acid Attributed Carbon Dots,” ACS Biomaterials Science & Engineering 6 (2020): 4490-4501.

[128]

T. Tong, H. Hu, J. Zhou, et al., “Glycyrrhizic-Acid-Based Carbon Dots With High Antiviral Activity by Multisite Inhibition Mechanisms,” Small 16 (2020): 1906206.

[129]

S. Chatterjee, A. Chakraborty, J. Banik, S. Mahindru, A. K. Sharma, and M. Mukherjee, “SNAP@CQD as a Promising Therapeutic Vehicle Against HCoVs: An Overview,” Drug Discovery Today 28 (2023): 103601.

[130]

B. K. Saikia, K. Roy, and R. Konwar, “Preliminary Report on Therapeutic Potential of Coal-Derived Carbon Quantum Dots Against SARS-CoV-2 Virus,” Virology 593 (2024): 110036.

[131]

X. Liu, Y. Liu, A. S. Thakor, et al., “Endogenous NO-Releasing Carbon Nanodots for Tumor-Specific Gas Therapy,” Acta Biomaterialia 136 (2021): 485-494.

[132]

X. Qin, J. Liu, Q. Zhang, W. Chen, X. Zhong, and J. He, “Synthesis of Yellow-Fluorescent Carbon Nano-Dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells,” Nanoscale Research Letters 16 (2021): 14.

[133]

E. S. M. Cutrim, A. A. M. Vale, D. Manzani, et al., “Preparation, Characterization and in Vitro Anticancer Performance of Nanoconjugate Based on Carbon Quantum Dots and 5-Fluorouracil,” Materials Science and Engineering: C 120 (2021): 111781.

[134]

R. Lv, G. Li, S. Lu, and T. Wang, “Synthesis of Multi-Functional Carbon Quantum Dots for Targeted Antitumor Therapy,” Journal of Fluorescence 31 (2021): 339-348.

[135]

W. Zhang, G. Sigdel, K. J. Mintz, et al., “Carbon Dots: A Future Blood-Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier,” International Journal of Nanomedicine 16 (2021): 5003-5016.

[136]

K. J. Mintz, G. Mercado, Y. Zhou, et al., “Tryptophan Carbon Dots and Their Ability to Cross the Blood-Brain Barrier,” Colloids and Surfaces. B, Biointerfaces 176 (2019): 488-493.

[137]

Y. Zhou, P. Y. Liyanage, D. Devadoss, et al., “Nontoxic Amphiphilic Carbon Dots as Promising Drug Nanocarriers Across the Blood-brain Barrier and Inhibitors of β-amyloid,” Nanoscale 11 (2019): 22387-22397.

[138]

S. D. Hettiarachchi, R. M. Graham, K. J. Mintz, et al., “Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors,” Nanoscale 11 (2019): 6192-6205.

[139]

M. Algarra, J. Soto, M. S. Pino-González, E. Gonzalez-Munoz, and T. Dučić, “Multifunctionalized Carbon Dots as an Active Nanocarrier for Drug Delivery to the Glioblastoma Cell Line,” ACS Omega 9 (2024): 13818-13830.

[140]

P. Das, S. Ganguly, T. Agarwal, et al., “Heteroatom Doped Blue Luminescent Carbon Dots as a Nano-Probe for Targeted Cell Labeling and Anticancer Drug Delivery Vehicle,” Materials Chemistry and Physics 237 (2019): 121860.

[141]

X. Wen, Z. Zhao, S. Zhai, X. Wang, and Y. Li, “Stable Nitrogen and Sulfur co-doped Carbon Dots for Selective Folate Sensing, in Vivo Imaging and Drug Delivery,” Diamond and Related Materials 105 (2020): 107791.

[142]

N. Arsalani, P. Nezhad-Mokhtari, and E. Jabbari, “Microwave-Assisted and One-Step Synthesis of PEG Passivated Fluorescent Carbon Dots From Gelatin as an Efficient Nanocarrier for Methotrexate Delivery,” Artificial Cells, Nanomedicine, and Biotechnology 47 (2019): 540-547.

[143]

W. Su, R. Guo, F. Yuan, et al., “Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells,” Journal of Physical Chemistry Letters 11 (2020): 1357-1363.

[144]

X. Li, K. Vinothini, T. Ramesh, M. Rajan, and A. Ramu, “Combined Photodynamic-Chemotherapy Investigation of Cancer Cells Using Carbon Quantum Dot-Based Drug Carrier System,” Drug Delivery 27 (2020): 791-804.

[145]

Y. Hailing, L. Xiufang, W. Lili, et al., “Doxorubicin-Loaded Fluorescent Carbon Dots With PEI Passivation as a Drug Delivery System for Cancer Therapy,” Nanoscale 12 (2020): 17222-17237.

[146]

Y. Sun, S. Zheng, L. Liu, et al., “The Cost-Effective Preparation of Green Fluorescent Carbon Dots for Bioimaging and Enhanced Intracellular Drug Delivery,” Nanoscale Research Letters 15 (2020): 55.

[147]

S. Wang, L. Chen, J. Wang, et al., “Enhanced-Fluorescent Imaging and Targeted Therapy of Liver Cancer Using Highly Luminescent Carbon Dots-Conjugated Foliate,” Materials Science & Engineering C-Materials for Biological Applications 116 (2020): 111233.

[148]

S. Li, W. Su, H. Wu, et al., “Targeted Tumour Theranostics in Mice via Carbon Quantum Dots Structurally Mimicking Large Amino Acids,” Nature Biomedical Engineering 4 (2020): 704-716.

[149]

S. Li, Z. Guo, G. Zeng, Y. Zhang, W. Xue, and Z. Liu, “Polyethylenimine-Modified Fluorescent Carbon Dots as Vaccine Delivery System for Intranasal Immunization,” ACS Biomaterials Science & Engineering 4 (2018): 142-150.

[150]

S. Huang, B. Li, U. Ashraf, et al., “Quaternized Cationic Carbon Dots as Antigen Delivery Systems for Improving Humoral and Cellular Immune Responses,” ACS Applied Nano Materials 3 (2020): 9449-9461.

[151]

L. Luo, C. Liu, T. He, et al., “Engineered Fluorescent Carbon Dots as Promising Immune Adjuvants to Efficiently Enhance Cancer Immunotherapy,” Nanoscale 10 (2018): 22035-22043.

[152]

Y. Wang, J. Chen, J. Tian, et al., “Tryptophan-Sorbitol Based Carbon Quantum Dots for Theranostics Against Hepatocellular Carcinoma,” Journal of Nanobiotechnology 20 (2022): 7816.

[153]

C. Mickaël, F. Jiahui, R. Mickaël, P. Françoise, and L. Luc, “Influence of Carbonization Conditions on Luminescence and Gene Delivery Properties of Nitrogen-doped Carbon Dots,” RSC Advances 9 (2019): 3493-3502.

[154]

R. Mohammadinejad, A. Dadashzadeh, S. Moghassemi, et al., “Shedding Light on Gene Therapy: Carbon Dots for the Minimally Invasive Image-Guided Delivery of Plasmids and Noncoding RNAs—A Review,” Journal of Advanced Research 18 (2019): 81-93.

[155]

S. Mondal, J. Raut, and P. Sahoo, “Gene Silencing and Gene Delivery in Therapeutics: Insights Using Quantum Dots,” Frontiers in Bioscience-Landmark 28 (2023): 364.

[156]

H. Xu, J. Chang, H. Wu, et al., “Carbon Dots With Guanidinium and Amino Acid Functional Groups for Targeted Small Interfering RNA Delivery Toward Tumor Gene Therapy,” Small 19 (2023): 2207204.

[157]

X. He, Q. Luo, J. Zhang, et al., “Gadolinium-Doped Carbon Dots as Nano-Theranostic Agents for MR/FL Diagnosis and Gene Delivery,” Nanoscale 11 (2019): 12973-12982.

[158]

X. He, P. Chen, J. Zhang, et al., “Cationic Polymer-Derived Carbon Dots for Enhanced Gene Delivery and Cell Imaging,” Biomaterials Science 7 (2019): 1940-1948.

[159]

P. Chen, J. Zhang, X. He, Y. H. Liu, and X. Q. Yu, “Hydrophobically Modified Carbon Dots as a Multifunctional Platform for Serum-Resistant Gene Delivery and Cell Imaging,” Biomaterials Science 8 (2020): 3730-3740.

[160]

I. Martins, H. Tomás, F. Lahoz, and J. Rodrigues, “Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery,” Biomacromolecules 22 (2021): 2436-2450.

[161]

M. Algarra and E. Gonzalez-Muñoz, “Efficient and Scalable Gene Delivery Method With Easily Generated Cationic Carbon Dots,” Biological Procedures Online 26 (2024): 6.

[162]

S. E. Drago, M. A. Utzeri, N. Mauro, and G. Cavallaro, “Polyamidoamine-Carbon Nanodot Conjugates With Bioreducible Building Blocks: Smart Theranostic Platforms for Targeted siRNA Delivery,” Biomacromolecules 25 (2024): 1191-1204.

[163]

L. M. Zhai, Y. Zhao, R. L. Xiao, et al., “Nuclear-Targeted Carbon Quantum Dot Mediated CRISPR/Cas9 Delivery for Fluorescence Visualization and Efficient Editing,” Nanoscale 14 (2022): 14645-14660.

[164]

H. O. Othman, E. T. Anwer, D. S. Ali, et al., “Recent Advances in Carbon Quantum Dots for Gene Delivery: A Comprehensive Review,” Journal of Cellular Physiology 239 (2024): e31236.

[165]

X. W. Hua, Y. W. Bao, Z. Chen, and F. G. Wu, “Carbon Quantum Dots With Intrinsic Mitochondrial Targeting Ability for Mitochondria-Based Theranostics,” Nanoscale 9 (2017): 10948-10960.

[166]

H. Wang, M. Zhang, Y. Ma, et al., “Carbon Dots Derived From Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages,” ACS Applied Materials & Interfaces 12 (2020): 41088-41095.

[167]

W. Li, H. Zhang, Y. Zheng, et al., “Multifunctional Carbon Dots for Highly Luminescent Orange-Emissive Cellulose Based Composite Phosphor Construction and Plant Tissue Imaging,” Nanoscale 9 (2017): 12976-12983.

[168]

F. Lu, Y. Song, H. Huang, et al., “Fluorescent Carbon Dots With Tunable Negative Charges for Bio-Imaging in Bacterial Viability Assessment,” Carbon 120 (2017): 95-102.

[169]

Y. Song, H. Li, F. Lu, et al., “Fluorescent Carbon Dots With Highly Negative Charges as a Sensitive Probe for Real-Time Monitoring of Bacterial Viability,” Journal of Materials Chemistry B 5 (2017): 6008-6015.

[170]

J. Yang, G. Gao, X. Zhang, Y. H. Ma, X. Chen, and F. G. Wu, “One-Step Synthesis of Carbon Dots With Bacterial Contact-Enhanced Fluorescence Emission: Fast Gram-Type Identification and Selective Gram-Positive Bacterial Inactivation,” Carbon 146 (2019): 827-839.

[171]

S. Wang, Y. Zhang, P. Zhuo, Q. Hu, Z. Chen, and L. Zhou, “Identification of Eight Pathogenic Microorganisms by Single Concentration-Dependent Multicolor Carbon Dots,” Journal of Materials Chemistry B 8 (2020): 5877-5882.

[172]

X. Zhao, Q. Tang, S. Zhu, et al., “Controllable Acidophilic Dual-Emission Fluorescent Carbonized Polymer Dots for Selective Imaging of Bacteria,” Nanoscale 11 (2019): 9526-9532.

[173]

J. H. Liu, R. S. Li, B. Yuan, J. Wang, Y. F. Li, and C. Z. Huang, “Mitochondria-Targeting Single-Layered Graphene Quantum Dots With Dual Recognition Sites for ATP Imaging in Living Cells,” Nanoscale 10 (2018): 17402-17408.

[174]

Y. Liu, J. Liu, J. Zhang, et al., “Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots Across the Blood-Brain Barrier,” ACS Omega 3 (2018): 7888-7896.

[175]

Y. Liu, J. Liu, J. Zhang, et al., “A Brand-New Generation of Fluorescent Nano-Neural Tracers: Biotinylated Dextran Amine Conjugated Carbonized Polymer Dots,” Biomaterials Science 7 (2019): 1574-1583.

[176]

J. J. Liu, D. Li, K. Zhang, M. Yang, H. Sun, and B. Yang, “One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots With 31% Efficient Red Emission for in Vivo Imaging,” Small 14 (2018): 1703919.

[177]

R. S. Li, P. F. Gao, H. Z. Zhang, et al., “Chiral Nanoprobes for Targeting and Long-Term Imaging of the Golgi Apparatus,” Chemical Science 8 (2017): 6829-6835.

[178]

L. Wang, B. Wu, W. Li, et al., “Industrial Production of Ultra-Stable Sulfonated Graphene Quantum Dots for Golgi Apparatus Imaging,” Journal of Materials Chemistry B 5 (2017): 5355-5361.

[179]

X. W. Hua, Y. W. Bao, and F. G. Wu, “Fluorescent Carbon Quantum Dots With Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery,” ACS Applied Materials & Interfaces 10 (2018): 10664-10677.

[180]

H. Liu, J. Yang, Z. Li, et al., “Hydrogen-Bond-Induced Emission of Carbon Dots for Wash-Free Nucleus Imaging,” Analytical Chemistry 91 (2019): 9259-9265.

[181]

G. Magdy, S. Ebrahim, F. Belal, R. A. El-Domany, and A. M. Abdel-Megied, “Sulfur and Nitrogen co-doped Carbon Quantum Dots as Fluorescent Probes for the Determination of Some Pharmaceutically-Important Nitro Compounds,” Scientific Reports 13 (2023): 5502.

[182]

X. Huang, F. Zhang, L. Zhu, et al., “Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots,” ACS Nano 7 (2013): 5684-5693.

[183]

J. Liu, Y. Geng, D. Li, et al., “Deep Red Emissive Carbonized Polymer Dots With Unprecedented Narrow Full Width at Half Maximum,” Advanced Materials 32 (2020): 1906641.

[184]

G. Xu, X. Bao, J. Chen, et al., “In Vivo Tumor Photoacoustic Imaging and Photothermal Therapy Based on Supra-(Carbon Nanodots),” Advanced Healthcare Materials 8 (2019): e1800995.

[185]

W. Xu, J. Chen, S. Sun, et al., “Fluorescent and Photoacoustic Bifunctional Probe for the Detection of Ascorbic Acid in Biological Fluids, Living Cells and in Vivo,” Nanoscale 10 (2018): 17834-17841.

[186]

Y. Liu, X. Zhi, W. Hou, et al., “Gd3+-Ion-Induced Carbon-Dots Self-Assembly Aggregates Loaded With a Photosensitizer for Enhanced Fluorescence/MRI Dual Imaging and Antitumor Therapy,” Nanoscale 10 (2018): 19052-19063.

[187]

M. Zhang, T. Zheng, B. Sheng, et al., “Mn2+ Complex-Modified Polydopamine- and Dual Emissive Carbon Dots Based Nanoparticles for in Vitro and in Vivo Trimodality Fluorescent, Photothermal, and Magnetic Resonance Imaging,” Chemical Engineering Journal 373 (2019): 1054-1063.

[188]

A. Guiseppi-Elie, C. Lei, and R. H. Baughman, “Direct Electron Transfer of Glucose Oxidase on Carbon Nanotubes,” Nanotechnology 13 (2002): 559.

[189]

Y. Wang, Z. Wang, Y. Rui, and M. Li, “Horseradish Peroxidase Immobilization on Carbon Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing,” Biosensors & Bioelectronics 64 (2015): 57-62.

[190]

G. Mehdipour, J. Shabani Shayeh, M. Omidi, M. Pour Madadi, F. Yazdian, and L. Tayebi, “An Electrochemical Aptasensor for Detection of Prostate-Specific Antigen Using Reduced Graphene Gold Nanocomposite and Cu/Carbon Quantum Dots,” Biotechnology and Applied Biochemistry 69 (2022): 2102-2111.

[191]

M. Pourmadadi, A. Nouralishahi, M. Shalbaf, J. Shabani Shayeh, and A. Nouralishahi, “An Electrochemical Aptasensor for Detection of Prostate-Specific Antigen-Based on Carbon Quantum Dots-Gold Nanoparticles,” Biotechnology and Applied Biochemistry 70 (2023): 175-183.

[192]

V. Raveendran and R. N. Kizhakayil, “Fluorescent Carbon Dots as Biosensor, Green Reductant, and Biomarker,” ACS Omega 6 (2021): 23475-23484.

[193]

S. Mohammadi, A. Salimi, Z. Hoseinkhani, F. Ghasemi, and K. Mansouri, “Carbon Dots Hybrid for Dual Fluorescent Detection of microRNA-21 Integrated Bioimaging of MCF-7 Using a Microfluidic Platform,” Journal of Nanobiotechnology 20 (2022): 73.

[194]

R. Garg and D. Prasad, “Carbon Dots and Their Interactions With Recognition Molecules for Enhanced Nucleic Acid Detection,” Biochemical and Biophysical Research Communications 680 (2023): 93-107.

[195]

K. Barrientos, J. P. Arango, M. S. Moncada, et al., “Carbon Dot-Based Biosensors for the Detection of Communicable and Non-communicable Diseases,” Talanta 251 (2023): 123791.

[196]

M. Amjadi, Z. Abolghasemi-Fakhri, and T. Hallaj, “Carbon Dots-Silver Nanoparticles Fluorescence Resonance Energy Transfer System as a Novel Turn-on Fluorescent Probe for Selective Determination of Cysteine,” Journal of Photochemistry and Photobiology A: Chemistry 309 (2015): 8-14.

[197]

Z. Tang, Z. Lin, G. Li, and Y. Hu, “Amino Nitrogen Quantum Dots-Based Nanoprobe for Fluorescence Detection and Imaging of Cysteine in Biological Samples,” Analytical Chemistry 89 (2017): 4238-4245.

[198]

S. S. Liang, L. Qi, R. L. Zhang, M. Jin, and Z. Q. Zhang, “Ratiometric Fluorescence Biosensor Based on CdTe Quantum and Carbon Dots for Double Strand DNA Detection,” Sensors & Actuators, B: Chemical 244 (2017): 585-590.

[199]

M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon Nanotubes: Present and Future Commercial Applications,” Science 339 (2013): 535-539.

[200]

R. Bakhtiar, “Surface Plasmon Resonance Spectroscopy: A Versatile Technique in a Biochemist's Toolbox,” Journal of Chemical Education 90 (2013): 203-209.

[201]

M. Amiri, S. Dadfarnia, A. M. Haji Shabani, and S. Sadjadi, “Non-Enzymatic Sensing of Dopamine by Localized Surface Plasmon Resonance Using Carbon Dots-Functionalized Gold Nanoparticles,” Journal of Pharmaceutical and Biomedical Analysis 172 (2019): 223-229.

[202]

A. Beiraghi and S. A. Najibi-Gehraz, “Carbon Dots-Modified Silver Nanoparticles as a New Colorimetric Sensor for Selective Determination of Cupric Ions,” Sensors & Actuators, B: Chemical 253 (2017): 342-351.

[203]

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chemical Physics Letters 26 (1974): 163-166.

[204]

X. Gu, M. J. Trujillo, J. E. Olson, and J. P. Camden, “SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin,” Annual Review of Analytical Chemistry 11 (2018): 147-169.

[205]

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, Applications, and the Future,” Materials Today 15 (2012): 16-25.

[206]

E. G. Oliveira L. de, H. P. de Oliveira, and A. S. L. Gomes, “Metal Nanoparticles/Carbon Dots Nanocomposites for SERS Devices: Trends and Perspectives,” SN Applied Sciences 2 (2020): 1491.

[207]

X. Liang, N. Li, R. Zhang, et al., “Carbon-Based SERS Biosensor: From Substrate Design to Sensing and Bioapplication,” NPG Asia Materials 13 (2021): 8.

[208]

H. Wang, S. Han, Y. Liu, J. Yan, and L. Li, “Sequence Transfer Correction Algorithm for Numerical Weather Prediction Wind Speed and Its Application in a Wind Power Forecasting System,” Applied Energy 237 (2019): 1-10.

[209]

D. Yao, C. Li, G. Wen, A. Liang, and Z. Jiang, “A Highly Sensitive and Accurate SERS/RRS Dual-Spectroscopic Immunosensor for Clenbuterol Based on Nitrogen/Silver-Codoped Carbon Dots Catalytic Amplification,” Talanta 209 (2020): 120529.

[210]

X. Pang, Y. Zhang, J. Pan, et al., “A Photoelectrochemical Biosensor for Fibroblast-Like Synoviocyte Cell Using Visible Light-Activated NCQDs Sensitized-ZnO/CH3NH3PbI3 Heterojunction,” Biosensors & Bioelectronics 77 (2016): 330-338.

[211]

F. Wu, L. Yue, H. Su, K. Wang, L. Yang, and X. Zhu, “Carbon Dots @ Platinum Porphyrin Composite as Theranostic Nanoagent for Efficient Photodynamic Cancer Therapy,” Nanoscale Research Letters 13 (2018): 357.

[212]

X. Li, J. F. Lovell, J. Yoon, and X. Chen, “Clinical Development and Potential of Photothermal and Photodynamic Therapies for Cancer,” Nature Reviews Clinical Oncology 17 (2020): 657-674.

[213]

R. Wang, J. Shen, Y. Ma, et al., “Cancer-Targeting Carbon Quantum Dots Synthesized by Plasma Electrochemical Method for Red-Light-Activated Photodynamic Therapy,” Plasma Processes and Polymers 21 (2024): 2300174.

[214]

G. Murali, B. Kwon, H. Kang, et al., “Hematoporphyrin Photosensitizer-Linked Carbon Quantum Dots for Photodynamic Therapy of Cancer Cells,” ACS Applied Nano Materials 5 (2022): 4376-4385.

[215]

C. L. Li, C. M. Ou, C. C. Huang, et al., “Carbon Dots Prepared From Ginger Exhibiting Efficient Inhibition of Human Hepatocellular Carcinoma Cells,” Journal of Materials Chemistry B 2 (2014): 4564-4571.

[216]

R. Sekar, N. Basavegowda, S. Jena, et al., “Recent Developments in Heteroatom/Metal-Doped Carbon Dot-Based Image-Guided Photodynamic Therapy for Cancer,” Pharmaceutics 14 (2022): 1869.

[217]

A. Nasrin, M. Hassan, and V. G. Gomes, “Two-Photon Active Nucleus-Targeting Carbon Dots: Enhanced ROS Generation and Photodynamic Therapy for Oral Cancer,” Nanoscale 12 (2020): 20598-20603.

[218]

Y. Li, S. Wu, J. Zhang, R. Zhou, and X. Cai, “Sulphur Doped Carbon Dots Enhance Photodynamic Therapy via PI3K/Akt Signalling Pathway,” Cell Proliferation 53 (2020): e12821.

[219]

N. Xu, J. Du, Q. Yao, et al., “Carbon Dots Inspired by Structure-Inherent Targeting for Nucleic Acid Imaging and Localized Photodynamic Therapy,” Sensors and Actuators B-Chemical 344 (2021): 130322.

[220]

T. Chen, T. Yao, H. Peng, et al., “An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy With Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals,” Advanced Functional Materials 31 (2021): 2106079.

[221]

X. Hu, S. Wang, Q. Luo, et al., “Synthesis of Sn Nanocluster@Carbon Dots for Photodynamic Therapy Application,” Chinese Chemical Letters 32 (2021): 2287-2291.

[222]

M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, and X. Jing, “One-Pot to Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy,” ACS Applied Materials & Interfaces 8 (2016): 23533-23541.

[223]

X. Bao, Y. Yuan, J. Chen, et al., “In Vivo Theranostics With Near-Infrared-Emitting Carbon Dots—Highly Efficient Photothermal Therapy Based on Passive Targeting After Intravenous Administration,” Light: Science & Applications 7 (2018): 91.

[224]

S. Li, S. Zhou, Y. Li, et al., “Exceptionally High Payload of the IR780 Iodide on Folic Acid-Functionalized Graphene Quantum Dots for Targeted Photothermal Therapy,” ACS Applied Materials & Interfaces 9 (2017): 22332-22341.

[225]

B. Wei, F. Dong, W. Yang, et al., “Synthesis of Carbon-dots@SiO2@TiO2 Nanoplatform for Photothermal Imaging Induced Multimodal Synergistic Antitumor,” Journal of Advanced Research 23 (2020): 13-23.

[226]

S. Balou, P. Shandilya, and A. Priye, “Carbon Dots for Photothermal Applications,” Frontiers in Chemistry 10 (2022): 1023602.

[227]

H. Zhang, Y. Liu, and S. Qu, “Recent Advances in Photo-Responsive Carbon Dots for Tumor Therapy,” Responsive Materials 2 (2024): e20240012.

[228]

L. Zdražil, A. Cadranel, M. Medved', M. Otyepka, R. Zbořil, and D. M. Guldi, “Designing Carbon Dots for Enhanced Photo-Catalysis: Challenges and Opportunities,” Chemistry (Weinheim An Der Bergstrasse, Germany) 10 (2024): 2700-2723.

[229]

C. Tang, C. Liu, Y. Han, et al., “Nontoxic Carbon Quantum Dots/G-C3 N4 for Efficient Photocatalytic Inactivation of Staphylococcus Aureus Under Visible Light,” Advanced Healthcare Materials 8 (2019), 1801534.

[230]

A. Mozdbar, A. Nouralishahi, S. Fatemi, and F. S. Talatori, “The Impact of Carbon Quantum Dots (CQDs) on the Photocatalytic Activity of TiO2 Under UV and Visible Light,” Journal of Water Process Engineering 51 (2023): 103465.

[231]

T. Xu, S. Zhao, C. Lin, X. Zheng, and M. Lan, “Recent Advances in Nanomaterials for Sonodynamic Therapy,” Nano Research 13 (2020): 2898-2908.

[232]

T. Zhang, H. Xing, M. Xiong, et al., “Carbon Dots-Based Nanoclusters for Sonodynamic Therapy of Bacterial Infection Enhanced by Deep Biofilm Penetration and Hypoxia Alleviation,” Chemical Engineering Journal 488 (2024): 150819.

[233]

X. Ren, Y. Shi, Y. Yang, and Z. Liu, “Integrin αvβ3-targeted Engineered Carbon Dots for Efficacious Sonodynamic Therapy and Fluorescence Navigation Surgery Against Gliomas,” Materials Chemistry Frontiers 8 (2024): 2511-2524.

[234]

J. Tang, J. Hu, X. Bai, et al., “Near-Infrared Carbon Dots with Antibacterial and Osteogenic Activities for Sonodynamic Therapy of Infected Bone Defects,” Small (2024): 2404900.

[235]

K. Nekoueian, M. Amiri, M. Sillanpää, F. Marken, R. Boukherroub, and S. Szunerits, “Carbon-Based Quantum Particles: An Electroanalytical and Biomedical Perspective,” Chemical Society Reviews 48 (2019): 4281-4316.

[236]

B. Geng, J. Hu, Y. Li, et al., “Near-Infrared Phosphorescent Carbon Dots for Sonodynamic Precision Tumor Therapy,” Nature Communications 13 (2022): 5735.

[237]

Y. Li, W. Chen, Y. Kang, et al., “Nanosensitizer-Mediated Augmentation of Sonodynamic Therapy Efficacy and Antitumor Immunity,” Nature Communications 14 (2023): 697.

[238]

V. R. Shinde, S. Khatun, A. M. Thanekar, A. Hak, and A. K. Rengan, “Lipid-Coated Red Fluorescent Carbon Dots for Imaging and Synergistic Phototherapy in Breast Cancer,” Photodiagnosis and Photodynamic Therapy 41 (2023): 103314.

[239]

Y. Hu, L. Zhang, S. Chen, et al., “Multifunctional Carbon Dots With Near-Infrared Absorption and Emission for Targeted Delivery of Anticancer Drugs, Tumor Tissue Imaging and Chemo/Photothermal Synergistic Therapy,” Nanoscale Advances 3 (2021): 6869-6875.

[240]

S. D. Dutta, J. Hexiu, J. Kim, et al., “Two-Photon Excitable Membrane Targeting Polyphenolic Carbon Dots for Long-Term Imaging and pH-Responsive Chemotherapeutic Drug Delivery for Synergistic Tumor Therapy,” Biomaterials Science 10 (2022): 1680-1696.

[241]

R. Atchudan, T. N. J. I. Edison, S. Perumal, N. Clament Sagaya Selvam, and Y. R. Lee, “Green Synthesized Multiple Fluorescent Nitrogen-Doped Carbon Quantum Dots as an Efficient Label-Free Optical Nanoprobe for in Vivo Live-Cell Imaging,” Journal of Photochemistry and Photobiology A: Chemistry 372 (2019): 99-107.

[242]

T. Zhang, Q. Cheng, J. H. Lei, et al., “Constructing Oxygen-Related Defects in Carbon Nanodots With Janus Optical Properties: Noninvasive NIR Fluorescent Imaging and Effective Photocatalytic Therapy,” Advanced Materials 35 (2023): 2302705.

[243]

Q. Meng, Y. Wang, C. Li, and X. Hu, “Bismuth- and Gadolinium-Codoped Carbon Quantum Dots With Red/Green Dual Emission for Fluorescence/CT/T1-MRI Mode Imaging,” New Journal of Chemistry 46 (2022): 16970-16980.

[244]

N. Jin, Z. Wang, C. Yin, et al., “Novel Carbon Quantum Dots Precisely Trigger Ferroptosis in Cancer Cells Through Antioxidant Inhibition Synergistic Nanocatalytic Activity,” ACS Applied Materials & Interfaces 16 (2024): 37456-37467.

[245]

C. Han, X. Zhang, F. Wang, et al., “Duplex Metal co-doped Carbon Quantum Dots-Based Drug Delivery System With Intelligent Adjustable Size as Adjuvant for Synergistic Cancer Therapy,” Carbon 183 (2021): 789-808.

[246]

A.h.A. H. Abdellatif, H. M. Tawfeek, M. A. Younis, M. Alsharidah, and O. Al Rugaie, “Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential,” International Journal of Nanomedicine 17 (2022): 1951.

[247]

N. Le and K. Kim, “Current Advances in the Biomedical Applications of Quantum Dots: Promises and Challenges,” International Journal of Molecular Sciences 24 (2023): 12682.

[248]

A. Das, M. Roy, and M. Saha, “Recent Advances in Biomedical Applications of Carbon and Graphene Quantum Dots: A Review,” Biotechnology and Bioengineering 121 (2024): 1469-1485.

[249]

A. M. Anthony, P. Pandurangan, and S. Abbas, “Ligand Engineering With Heterocyclic Aromatic Thiol Doped Carbon Quantum Dots,” Carbon 211 (2023): 118086.

[250]

E. S. Seven, Y. B. Seven, Y. Zhou, et al., “Crossing the Blood-brain Barrier With Carbon Dots: Uptake Mechanism and in Vivo Cargo Delivery,” Nanoscale Advances 3 (2021): 3942-3953.

[251]

W. Zhang, G. Sigdel, K. J. Mintz, et al., “Carbon Dots: A Future Blood-Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier,” International Journal of Nanomedicine 16 (2021): 5003.

[252]

L. Tu, Q. Li, S. Qiu, et al., “Recent Developments in Carbon Dots: A Biomedical Application Perspective,” Journal of Materials Chemistry B 11 (2023): 3038-3053.

[253]

D. Li, P. Jing, L. Sun, et al., “Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots,” Advanced Materials 30 (2018): 1705913.

[254]

Q. Lin, P. L. Choyke, and N. Sato, “Visualizing Vasculature and Its Response to Therapy in the Tumor Microenvironment,” Theranostics 13 (2023): 5223.

[255]

A. B. Mirkasymov, I. V. Zelepukin, I. N. Ivanov, et al., “Macrophage Blockade Using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor,” International Journal of Pharmaceutics 621 (2022): 121795.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/