PDF
Abstract
While nanomedicine research shows a great progress in the treatment of cancer, it still faces challenges of tumor recurrence and metastasis. Numerous studies have demonstrated intricate crosstalk between platelets and tumor cells. The re-education of platelets by tumor cells enables these platelets to provide critical assistance for tumor proliferation, recurrence, and metastasis. Engineered platelets have shown promising potential in the treatment of tumors, postoperative tumor recurrence, and tumor metastasis. Different engineering technologies such as surface modification, gene editing, membrane coating, and loading into hydrogels can producemultifunctional and customized engineered platelets. These engineered platelets inherit the key properties of platelets, including long blood circulation, tumor targeting, and thrombus targeting, and can be stimulated to generate derivatized particles. In this review, we elucidate the critical role of platelets in the complex processes of tumorigenesis and tumor progression and summarize the emerging paradigm of engineered platelets in tumor therapy. The purpose of this review is to comprehensively explore the potential value of engineered platelets toward the clinical treatment of cancer, providing a valuable reference for the further development of engineered platelets and their broader applications in the field of cancer therapy.
Keywords
biomimetic nanomaterials
/
platelet-based nanomedicine
/
targeting circulating tumor cells
/
tumor metastasis therapy
/
tumor postoperative therapy
Cite this article
Download citation ▾
Kai Zhang, Hongyang Li, Zhaoyu Ma, Wenbin Zhong, Yongkang Yu, Yanli Zhao.
Engineered Platelets for Cancer Therapy.
Aggregate, 2025, 6(2): e704 DOI:10.1002/agt2.704
| [1] |
E. Lefrançais, G. Ortiz-Muñoz, A. Caudrillier, et al., “The Lung Is a Site of Platelet Biogenesis and a Reservoir for Haematopoietic Progenitors,” Nature 544 (2017):105.
|
| [2] |
P. E. J. van der Meijden and J. W. M. Heemskerk, “Platelet Biology and Functions: New Concepts and Clinical Perspectives,” Nature Reviews Cardiology 16 (2019):166.
|
| [3] |
Y. F. Lu, Q. Y. Hu, C. Jiang, and Z. Gu, “Platelet for Drug Delivery,” Current Opinion in Biotechnology 58 (2019):81.
|
| [4] |
M. S. Cho, J. Bottsford-Miller, H. G. Vasquez, et al., “Platelets Increase the Proliferation of Ovarian Cancer Cells,” Blood 120 (2012):4869.
|
| [5] |
M. Labelle, S. Begum, and R. O. Hynes, “Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis,” Cancer Cell 20 (2011):576.
|
| [6] |
F. Gaertner and S. Massberg, “Patrolling the Vascular Borders: Platelets in Immunity to Infection and Cancer,” Nature Reviews Immunology 19 (2019):747.
|
| [7] |
T. G. Diacovo, K. D. Puri, R. A. Warnock, T. A. Springer, and U. H. von Andrian, “Platelet-Mediated Lymphocyte Delivery to High Endothelial Venules,” Science 273 (1996):252.
|
| [8] |
M. R. Yeaman, “Platelets: At the Nexus of Antimicrobial Defence,” Nature Reviews Microbiology 12 (2014):426.
|
| [9] |
B. D. Elzey, T. L. Ratliff, J. M. Sowa, and S. A. Crist, “Platelet CD40L at the Interface of Adaptive Immunity,” Thrombosis Research 127 (2011):180.
|
| [10] |
S. R. Clark, A. C. Ma, S. A. Tavener, et al., “Platelet TLR4 Activates Neutrophil Extracellular Traps to Ensnare Bacteria in Septic Blood,” Nature Medicine 13 (2007):463.
|
| [11] |
M. Iannacone, G. Sitia, M. Isogawa, et al., “Platelets Mediate Cytotoxic T Lymphocyte–Induced Liver Damage,” Nature Medicine 11 (2005):1167.
|
| [12] |
J. Li, D. Karakas, F. Xue, et al., “Desialylated Platelet Clearance in the Liver Is a Novel Mechanism of Systemic Immunosuppression,” Research 6 (2023):0236.
|
| [13] |
C. Ma, Q. Fu, L. P. Diggs, et al., “Platelets Control Liver Tumor Growth through P2Y12-dependent CD40L Release in NAFLD,” Cancer Cell 40 (2022):986.
|
| [14] |
X. R. Xu, G. M. Yousef, and H. Y. Ni, “Cancer and Platelet Crosstalk: Opportunities and Challenges for Aspirin and OtherAntiplateletAgents,” Blood 131 (2018):1777.
|
| [15] |
A. A. Farooqi and Z. H. Siddik, “Platelet-Derived Growth Factor (PDGF) Signalling in Cancer: Rapidly Emerging Signalling Landscape,” Cell Biochemistry and Function 33 (2015):257.
|
| [16] |
A. T. Bauer, J. Suckau, K. Frank, et al., “von Willebrand Factor Fibers Promote Cancer-Associated Platelet Aggregation inMalignant Melanoma of Mice and Humans,” Blood 125 (2015):3153.
|
| [17] |
S. Takagi, Y. Sasaki, S. Koike, et al., “Platelet-Derived Lysophosphatidic Acid Mediated LPAR1 Activation as a Therapeutic Target for Osteosarcoma Metastasis,” Oncogene 40 (2021):5548.
|
| [18] |
S. P. Li, Y. L. Zhang, J. Wang, et al., “Nanoparticle-Mediated Local Depletion of Tumour-Associated Platelets Disrupts Vascular Barriers and Augments Drug Accumulation in Tumours,” Nature Biomedical Engineering 1 (2017):667.
|
| [19] |
E. M. Battinelli, B. A. Markens, and J. E. Italiano, “Release of Angiogenesis Regulatory Proteins from Platelet Alpha Granules: Modulation of Physiologic and Pathologic Angiogenesis,” Blood 118 (2011):1359.
|
| [20] |
S. Lucotti, C. Cerutti, M. Soyer, et al., “Aspirin Blocks Formation of Metastatic Intravascular Niches by Inhibiting Platelet-Derived COX-1/Thromboxane A2,” Journal of Clinical Investigation 129 (2019):1845.
|
| [21] |
Z. Y. Zhou, P. M. Shi, C. L. Wang, Y. Y. Sun, and C. Z. Gao, “Recent Updates in Nanoscale Delivery Systems of Platinum(IV) Antitumor Prodrugs,” Coordination Chemistry Reviews 508 (2024):215774.
|
| [22] |
Y. Xiong, Q. Feng, L. Lu, et al., “Metal–Organic Frameworks and Their Composites for Chronic Wound Healing: From Bench to Bedside,” Advanced Materials 36 (2023):2302587.
|
| [23] |
M. E. Davis, Z. Chen, and D. M. Shin, “Nanoparticle Therapeutics: An Emerging TreatmentModality for Cancer,” Nature ReviewsDrugDiscovery 7 (2008):771.
|
| [24] |
L. L. Zhu, X. Z. Yu, T. Cao, et al., “Immune Cell Membrane-Based Biomimetic Nanomedicine for Treating Cancer Metastasis,” Acta Pharmaceutica Sinica B 13 (2023):2464.
|
| [25] |
J. L. Yang, X. C. Zhang, C. Liu, et al., “Biologically Modified Nanoparticles as Theranostic Bionanomaterials,” Progress in Materials Science 118 (2021):100768.
|
| [26] |
X. Zhang, D. Yao, W. Y. Zhao, et al., “Engineering Platelet-Rich Plasma Based Dual-Network Hydrogel as a Bioactive Wound Dressing with Potential Clinical Translational Value,” Advanced FunctionalMaterials 31 (2021):2009258.
|
| [27] |
K. Zhang, Y. Y. Long, S. T. Li, Y. L. Zhao, and H. Y. Han, “Inhalable Biomimetic Nanomotor for Pulmonary Thrombus Therapy,” Nano Today 55 (2024):102171.
|
| [28] |
S. T. Li, K. Zhang, Z. Y. Ma, et al., “Biomimetic Nanoplatelets to Target Delivery Hirudin for Site-Specific Photothermal/Photodynamic Thrombolysis and Preventing Venous Thrombus Formation,” Small 18 (2022):2203184.
|
| [29] |
C. Wang, W. J. Sun, Y. Q. Ye, Q. Y. Hu, H. N. Bomba, and Z. Gu, “In Situ Activation of Platelets with Checkpoint Inhibitors for Post-Surgical Cancer Immunotherapy,” Nature Biomedical Engineering 1 (2017):0011.
|
| [30] |
M. Scherlinger, C. Richez, G. C. Tsokos, E. Boilard, and P. Blanco, “The Role of Platelets in Immune-Mediated Inflammatory Diseases,” Nature Reviews Immunology 23 (2023):495.
|
| [31] |
S. P. Li, Z. F. Lu, S. Y. Wu, et al., “The Dynamic Role of Platelets in Cancer Progression and Their Therapeutic Implications,” Nature Reviews Cancer 24 (2024):72.
|
| [32] |
Y. L. Zhu, L. L. Xu, Y. Kang, Q. Z. Cheng, Y. L. He, and X. Y. Ji, “Platelet-Derived Drug Delivery Systems: Pioneering Treatment for Cancer, Cardiovascular Diseases, Infectious Diseases, and Beyond,” Biomaterials 306 (2024):122478.
|
| [33] |
M. Wu, Y. Shi, J. X. Zhao, and M. Kong, “Engineering Unactivated Platelets for TargetedDrugDelivery,” Biomaterials Science 12 (2024):2244.
|
| [34] |
Y. X. Wang, Z. T. Li, F. Y. Mo, Z. Gu, and Q. Y. Hu, “Engineered Platelets: Advocates for Tumor Immunotherapy,” Nano Today 40 (2021):101281.
|
| [35] |
J.N. George, L. L. Thoi, L. M. McManus, and T. A. Reimann, “Isolation of human Platelet Membrane Microparticles from Plasma and Serum,” Blood 60 (1982):834.
|
| [36] |
M. E. M. Rybak and L. A. Renzulli, “A Liposome Based Platelet Substitute, the Plateletsome, with Hemostatic Efficacy,” Biomaterials, Artificial Cells and Immobilization Biotechnology 21 (1993):101.
|
| [37] |
A. C. Anselmo, C. L Modery-Pawlowski, S. Menegatti, et al., “Platelet-Like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target Vascular Injuries,” ACS Nano 8 (2014):11243.
|
| [38] |
C.M. J. Hu, R. H. Fang, K.C. Wang, et al., “Nanoparticle Biointerfacing by Platelet Membrane Cloaking,” Nature 526 (2015):118.
|
| [39] |
Q. Y. Hu, W. J. Sun, C. G. Qian, C. Wang, H. N. Bomba, and Z. Gu, “Anticancer Platelet-Mimicking Nanovehicles,” Advanced Materials 27 (2015):7043.
|
| [40] |
J. H. Li, Y.W. Ai, L. H. Wang, et al., “Targeted Drug Delivery to Circulating Tumor Cells via Platelet Membrane-Functionalized Particles,” Biomaterials 76 (2016):52.
|
| [41] |
L. Rao, L. L. Bu, Q. F. Meng, et al., “Antitumor Platelet-Mimicking Magnetic Nanoparticles,” Advanced Functional Materials 27 (2017):1604774.
|
| [42] |
L. L. Bu, L. Rao, G. T. Yu, et al., “Cancer Stem Cell-Platelet Hybrid Membrane-Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma,” Advanced Functional Materials 29 (2019):1807733.
|
| [43] |
L. J. Jing, H. J. Qu, D. Q. Wu, et al., “Platelet-Camouflaged Nanococktail: Simultaneous Inhibition of Drug-Resistant Tumor Growth and Metastasis via a Cancer Cells and Tumor Vasculature Dual-Targeting Strategy,” Theranostics 8 (2018):2683.
|
| [44] |
A. L. Papa, A. Jiang, N. Korin, et al., “Platelet Decoys Inhibit Thrombosis and Prevent Metastatic Tumor Formation in Preclinical Models,” Science Translational Medicine 11 (2019): eaau5898.
|
| [45] |
S. G. Hwang, K. M. Kim, J. H. Cheong, et al., “Impact of Pretreatment Thrombocytosis on Blood-Borne Metastasis and Prognosis of Gastric Cancer,” European Journal of Surgical Oncology 38 (2012):562.
|
| [46] |
G. O. Abdulrahman, N. Das, and K. L. Singh, “The Predictive Role of Thrombocytosis in Benign, Borderline and Malignant Ovarian Tumors,” Platelets 31 (2020):795.
|
| [47] |
Y. Sasaki, T. Takahashi, H. Miyazaki, et al., “Production of Thrombopoietin byHumanCarcinomas and ItsNovel Isoforms,” Blood 94 (1999):1952.
|
| [48] |
R. L. Stone, A. M. Nick, I. A. McNeish, et al., “Paraneoplastic Thrombocytosis inOvarian Cancer,” NewEngland Journal ofMedicine 366 (2012):610.
|
| [49] |
G. L. Klement, T. T. Yip, F. Cassiola, et al., “PlateletsActivelySequester Angiogenesis Regulators,” Blood 113 (2009):2835.
|
| [50] |
P. Carmeliet and R. K. Jain, “Angiogenesis in Cancer and Other Diseases,” Nature 407 (2000):249.
|
| [51] |
A. Yamamoto, D. K. Dhar, O. N El-Assal, M. Igarashi, H. Tabara, and N. Naofumi, “Thymidine Phosphorylase (Platelet-Derived Endothelial Cell Growth Factor), Microvessel Density and Clinical Outcome in Hepatocellular Carcinoma,” Journal of Hepatology 29 (1998):290.
|
| [52] |
T. Dudiki, M. Veleeparambil, I. Zhevlakova, et al., “Mechanism of Tumor-Platelet Communications in Cancer,” Circulation Research 132 (2023):1447.
|
| [53] |
X. W. Liu, J. E. Song, H. Zhang, et al., “Immune Checkpoint HLA-E: CD94-NKG2A Mediates Evasion of Circulating Tumor Cells from NK Cell Surveillance,” Cancer Cell 41 (2023):272.
|
| [54] |
A. Rodriguez-Martinez, I. Simon-Saez, S. Perales, et al., “Exchange of Cellular Components between Platelets and Tumor Cells: Impact on Tumor Cells Behavior,” Theranostics 12 (2022):2150.
|
| [55] |
Q. C. Guo, M. W. Malloy, H. G. Roweth, J. E. Italiano, and E. Battinelli, “Platelets Up-Regulate Tumor Cell Programmed Death-Ligand 1 through Epidermal Growth Factor Receptor Signal Transduction,” Blood 138 (2021):1006.
|
| [56] |
A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg, “Emerging Biological Principles of Metastasis,” Cell 168 (2017):670.
|
| [57] |
A. Contursi, S. Schiavone, M. Dovizio, et al., “Platelets Induce Free and Phospholipid-Esterified 12-HydroxyeicosatetraenoicAcid Generation in Colon Cancer Cells by Delivering 12-Lipoxygenase,” Journal of Lipid Research 62 (2021):100109.
|
| [58] |
H. W. Liang, X. Yan, Y. Pan, et al., “MicroRNA-223 Delivered by Platelet-Derived Microvesicles Promotes Lung Cancer Cell Invasion via Targeting Tumor Suppressor EPB41L3,” Molecular Cancer 14 (2015):58.
|
| [59] |
K. Egan, N. Cooke, and D. Kenny, “Living in Shear: Platelets Protect Cancer Cells from Shear Induced Damage,” Clinical &Experimental Metastasis 31 (2014):697.
|
| [60] |
G. F. Xiong, J. Chen, G. Y. Zhang, et al., “Hsp47 promotes Cancer Metastasis by Enhancing Collagen-Dependent Cancer Cell-Platelet Interaction,” Proceedings of theNationalAcademy of Science of theUnited States of America 117 (2020):3748.
|
| [61] |
L. X. Yu, L. Yan, W. Yang, et al., “Platelets Promote TumourMetastasis via Interaction between TLR4 and Tumour Cell-Released High-Mobility Group Box 1 Protein,” Nature Communications 5 (2014):5256.
|
| [62] |
D. Stoiber and A. Assinger, “Platelet-Leukocyte Interplay in Cancer Development and Progression,” Cells 9 (2020):855.
|
| [63] |
X. Q. Li, X. Chen, S. Z. Gong, et al., “Platelets Promote CRC by Activating the C5a/C5aR1 Axis via PSGL-1/JNK/STAT1 Signaling in Tumor-Associated Macrophages,” Theranostics 13 (2023):2040.
|
| [64] |
S. C Silva-Cardoso, A. J. Affandi, L. Spel, et al., “CXCL4 Exposure Potentiates TLR-Driven Polarization of Human Monocyte-Derived Dendritic Cells and Increases Stimulation of T Cells,” Journal of Immunology 199 (2017):253.
|
| [65] |
Z. H. Li, B. Riesenberg, A. Metelli, A. Q. Li, and B. X. Wu, Platelets (Elsevier, 2019), 547.
|
| [66] |
A. Saris, J. Steuten, D. P. Schrijver, et al., “Inhibition of Dendritic Cell Activation and Modulation of T Cell Polarization by the Platelet Secretome,” Frontiers in Immunology 12 (2021):631285.
|
| [67] |
Y. X. Li, H. Y. Wang, Z. Zhao, Y. M. Yang, Z. F. Meng, and L. F. Qin, “Effects of the Interactions between Platelets with Other Cells in Tumor Growth and Progression,” Frontiers in Immunology 14 (2023):1165989.
|
| [68] |
L. S. Ribeiro, L. M. Branco, and B. S. Franklin, “Regulation of Innate Immune Responses by Platelets,” Frontiers in Immunology 10 (2019):1320.
|
| [69] |
T. Placke, H. G. Kopp, L. Kanz, and H. R. Salih, “Coating of Tumor Cells by Platelets Confers Expression of Immunoregulatory Molecules Which Impair NK Cell Anti-Tumor Reactivity,” Blood 114 (2009):2993.
|
| [70] |
S. Sadallah, L. Schmied, C. Eken, H. N. Charoudeh, F. Amicarella, and J. A. Schifferli, “Platelet-Derived Ectosomes Reduce NK Cell Function,” Journal of Immunology 197 (2016):1663.
|
| [71] |
S. B. Ma, T. T. Tang, X. J. Wu, et al., “PDGF-D–PDGFRβSignaling Enhances IL-15–Mediated Human Natural Killer Cell Survival,” Proceedings of the National Academy of Science of the United States of America 119 (2022): e2114134119.
|
| [72] |
G. F. Shi, D. J. Field, K. A. Ko, et al., “Platelet Factor 4 Limits Th17 Differentiation and Cardiac Allograft Rejection,” Journal of Clinical Investigation 124 (2014):543.
|
| [73] |
A. Paletta, F. Di Diego García, A. Varese, et al., “Platelets Modulate CD4+T-Cell Function in COVID-19 through a PD-L1 Dependent Mechanism,” British Journal of Haematology 197 (2022):283.
|
| [74] |
Y. N. Min, L. Hao, X. G. Liu, et al., “Platelets Fine-Tune Effector Responses of Naïve CD4+T Cells via Platelet Factor 4-Regulated Transforming Growth Factor βSignaling,” Cellular and Molecular Life Sciences 79 (2022):247.
|
| [75] |
C. Hinterleitner, J. Strhle, E. Malenke, et al., “Platelet PD-L1 Reflects Collective Intratumoral PD-L1 Expression and Predicts Immunotherapy Response in Non-Small Cell Lung Cancer,” Nature Communications 12 (2021):7005.
|
| [76] |
C.N. Morrell, D.N. Pariser, Z. T. Hilt, and D. Vega Ocasio, “The Platelet Napoleon Complex-Small Cells, but Big Immune Regulatory Functions,” Annual Review of Immunology 37 (2019):125.
|
| [77] |
N. Manickam, S. S. Ahmad, and D. W. Essex, “Vicinal Thiols Are Required for Activation of the αIIbβ3 Platelet Integrin,” Journal of Thrombosis and Haemostasis 9 (2011):1207.
|
| [78] |
D. W. Essex, “Redox Control of Platelet Function,” Antioxidants &Redox Signaling 11 (2009):1191.
|
| [79] |
L. Rao, L. L. Bu, L. Ma, et al., “Platelet-Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma,” Angewandte Chemie International Edition 57 (2018):986.
|
| [80] |
X. D. Zhang, J. Q. Wang, Z. W. Chen, et al., “Engineering PD-1-Presenting Platelets for Cancer Immunotherapy,” Nano Letters 18 (2018):5716.
|
| [81] |
F. J. Yang, Z. Q. Kong, Q. Y. Ji, et al., “Platelet-Inspired Nanotherapeutics for Biomedical Applications,” ACS Materials Letters 5 (2023):429.
|
| [82] |
B. Bahmani, H. Gong, B. T. Luk, et al., “Intratumoral Immunotherapy Using Platelet-Cloaked Nanoparticles Enhances Antitumor Immunity in Solid Tumors,” Nature Communications 12 (2021):1999.
|
| [83] |
S. Z. Li, Q. Dong, X. T. Peng, et al., “Self-Healing Hyaluronic Acid Nanocomposite Hydrogels with Platelet-Rich Plasma Impregnated for Skin Regeneration,” ACS Nano 16 (2022):11346.
|
| [84] |
W. Yang, X. Y. Kang, X. Gao, et al., “Biomimetic Natural Biopolymer-Based Wet-Tissue Adhesive for Tough Adhesion, Seamless Sealed, Emergency/Nonpressing Hemostasis, and Promoted Wound Healing,” Advanced Functional Materials 33 (2023):2211340.
|
| [85] |
Z. T. Li, Y. Y. Ding, J. Liu, et al., “Depletion of Tumor Associated Macrophages Enhances Local and Systemic Platelet-Mediated Anti-PD-1 Delivery for Post-Surgery Tumor Recurrence Treatment,” Nature Communications 13 (2022):1845.
|
| [86] |
Q. Y. Hu, H. J. Li, E. Archibong, et al., “Inhibition of Post-Surgery Tumour Recurrence via a Hydrogel Releasing CAR-T Cells and Anti-PDL1-Conjugated Platelets,” Nature Biomedical Engineering 5 (2021):1038.
|
| [87] |
J. Zhao, H. Ye, Q. Lu, et al., “Inhibition of Post-Surgery Tumour Recurrence via a Sprayable Chemo-Immunotherapy Gel Releasing PD-L1 Antibody and Platelet-Derived Small EVs,” Journal of Nanbiotechnology 20 (2022):62.
|
| [88] |
L. L. Zhang, Y. F. Zhu, X. B. Wei, et al., “Nanoplateletsomes Restrain Metastatic Tumor Formation through Decoy and Active Targeting in a Preclinical Mouse Model,” Acta Pharmaceutica Sinica B 12 (2022):3427.
|
| [89] |
S. P. Ning, X. Zhang, M. Suo, et al., “Platelet-Derived Exosomes Hybrid Liposomes FacilitateUninterrupted Singlet Oxygen Generation to Enhance Breast Cancer Immunotherapy,” Cell Reports Physical Science 4 (2023):101505.
|
| [90] |
Y. Y. Ma, Y. Q. Zhang, R. Han, et al., “A Cascade Synergetic Strategy Induced by Photothermal Effect Based on Platelet ExosomeNanoparticles for Tumor Therapy,” Biomaterials 282 (2022):121384.
|
| [91] |
T. Zhang, H. Liu, L. Li, et al. Bioactive Materials 6 (2021):3865.
|
| [92] |
S. P. Sheng, L. M. Jin, Y. Zhang, et al., “A Twindrive Precise Delivery System of Platelet-Neutrophil Hybrid Membrane Regulates Macrophage Combined with CD47 Blocking for Postoperative Immunotherapy,” ACS Nano 18 (2024):4981.
|
| [93] |
Y.K. Yu, Q. Z. Cheng, X. Y. Ji, et al., “Engineered Drug-LoadedCellular Membrane Nanovesicles for Efficient Treatment of Postsurgical Cancer Recurrence and Metastasis,” Science Advances 8 (2022): eadd3599.
|
| [94] |
H. Ye, K. Y. Wang, M. L. Wang, et al., “Bioinspired Nanoplatelets for Chemo-Photothermal Therapy of Breast Cancer Metastasis Inhibition,” Biomaterials 206 (2019):1.
|
| [95] |
K. Zhang, Z. Y. Ma, S. T. Li, et al., “Platelet-Covered Nanocarriers for Targeted Delivery of Hirudin to Eliminate Thrombotic Complication in Tumor Therapy,” ACS Nano 16 (2022):18483.
|
| [96] |
X. Yang, J. Y. Bian, Z. Wang, et al., “ABio-LiposomeActivatingNatural Killer Cell by Illuminating Tumor Homogenization Antigen Properties,” Advanced Science 10 (2023):2205449.
|
| [97] |
H. Z. Xu, T. F. Li, Y. Ma, et al., “Targeted Photodynamic Therapy of Glioblastoma Mediated by Platelets with Photo-Controlled Release Property,” Biomaterials 290 (2022):121833.
|
| [98] |
L. Q. Zhou, W. Feng, Y. H. Mao, Y. Chen, and X. J. Zhang, “Nanoengineered Sonosensitive Platelets for Synergistically Augmented Sonodynamic Tumor Therapy by Glutamine Deprivation and Cascading Thrombosis,” Bioactive Materials 24 (2023):26.
|
| [99] |
H. J. Li, Z. J. Wang, Z.W. Chen, et al., “Disrupting Tumour Vasculature and Recruitment of aPDL1-Loaded Platelets Control TumourMetastasis,” Nature Biomedical Engineering 12 (2021):2773.
|
| [100] |
Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen, “Reactive Oxygen SpeciesGenerating Systems Meeting Challenges of Photodynamic Cancer Therapy,” Chemical Society Reviews 45 (2016):6597.
|
| [101] |
Y. J. Liu, P. Bhattarai, Z. F. Dai, and X. Y. Chen, “Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer,” Chemical Society Reviews 48 (2019):2053.
|
| [102] |
Z. J. Xie, T. J. Fan, J. An, et al., “Emerging Combination Strategies with Phototherapy in Cancer Nanomedicine,” Chemical Society Reviews 49 (2020):8065.
|
| [103] |
Y. Chen, X. Shen, S. L. Han, et al., “Irradiation Pretreatment Enhances the Therapeutic Efficacy of Platelet-Membrane-Camouflaged Antitumor Nanoparticles,” Journal of Nanbiotechnology 18 (2020):101.
|
| [104] |
Y. W. Liu, S. T. Xu, Q. Y. Lyu, Y. Huang, and W. P. Wang, “Ce6 Nanoassemblies:Molecular Mechanism and Strategies forCombinational Anticancer Therapy,” Aggregate 5 (2024): e443.
|
| [105] |
J. Qian, D. Wang, F. H. Cai, Q. Q. Zhan, Y. L. Wang, and S. L. He, “Photosensitizer Encapsulated Organically Modified Silica Nanoparticles for Direct Two-Photon Photodynamic Therapy and in Vivo Functional Imaging,” Biomaterials 33 (2012):4851.
|
| [106] |
X. H. Chen, H. Q. Gao, Y. Y. Deng, Q. Jin, J. Ji, and D. Ding, “Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy,” ACS Nano 14 (2020):5121.
|
| [107] |
L. P. Zhang, Z. Y. Wang, R. Y., Zhang, et al., “Multi-Stimuli-Responsive and Cell Membrane Camouflaged Aggregation-Induced Emission Nanogels for Precise Chemo-Photothermal Synergistic Therapy of Tumors,” ACS Nano 17 (2023):25205.
|
| [108] |
H. Li, P. Wang, Y. X. Deng, et al., “Combination of Active Targeting, Enzyme-Triggered Release and Fluorescent Dye into Gold Nanoclusters for Endomicroscopy-Guided Photothermal/Photodynamic Therapy to Pancreatic Ductal Adenocarcinoma,” Biomaterials 139 (2017):30.
|
| [109] |
I. Zare, D. M. Chevrier, A. Cifuentes-Rius, et al., “Protein-Protected Metal Nanoclusters as Diagnostic and Therapeutic Platforms for Biomedical Applications,” Materials Today 66 (2023):159.
|
| [110] |
M. T. Yaraki, B. Liu, and Y.N. Tan, “Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers toward Advanced Phototherapy,” Nano-Micro Letters 14 (2022):123.
|
| [111] |
W. Y. Zhang, K. Cai, Z. D. Sun, et al., “Elevating Second Near-Infrared Photothermal Conversion Efficiency of HollowGoldNanorod for a Precise Theranostic of Orthotopic Bladder Cancer,” ACS Nano 17 (2023):18932.
|
| [112] |
Z. Y. Ma, Z. D. Sun, Z. C. Ye, et al., “Tumor Cell Dissociation-Enhanced Intravesical Chemotherapy of Orthotopic Bladder Cancer,” SmartMat 5 (2024): e1276.
|
| [113] |
H. J. Liu, X. T. Lv, J. C. Qian, et al., “Graphitic Carbon Nitride Quantum Dots Embedded in Carbon Nanosheets for Near-Infrared Imaging-Guided Combined Photo-Chemotherapy,” ACS Nano 14 (2020):13304.
|
| [114] |
F. Q. Liu, C. Guo, X. D. Li, et al., “A Versatile Nano-Transformer for Efficient Localization-Specific Imaging and Synergistic Therapy of Bladder Cancer,” Nano Today 54 (2024):102116.
|
| [115] |
C. P. Ding, Y. J. Huang, Z. Y. Shen, and X. Y. Chen, “Synthesis and Bioapplications of Ag2S Quantum Dots with Near-Infrared Fluorescence,” Advanced Materials 33 (2021):2007768.
|
| [116] |
R. R. Fan, C. L. Chen, H. Hou, et al., “Tumor Acidity and Near-Infrared Light Responsive Dual Drug Delivery Polydopamine-Based Nanoparticles for Chemo-Photothermal Therapy,” Advanced Functional Materials 31 (2021):2009733.
|
| [117] |
Y. Xiong, Y. Rao, J. W. Hu, Z. X. Luo, and C. Chen, “Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment,” Advanced Materials (2024):2305140.
|
| [118] |
J. J. Shi, P. W. Kantoff, R. Wooster, and O. C. Farokhzad, “Cancer Nanomedicine: Progress, Challenges and Opportunities,” Nature Reviews Cancer 17 (2016):20.
|
| [119] |
D. H. Fan, Y. K. Cao, M. Q. Cao, Y. J. Wang, Y. L. Cao, and T. Gong, “Nanomedicine in Cancer Therapy,” Signal Transduction and Targeted Therapy 8 (2023):293.
|
| [120] |
Y. Zhang, Y. C. Sun, X. Dong, et al., “A Platelet Intelligent Vehicle with Navigation for Cancer Photothermal-Chemotherapy,” ACS Nano 16 (2022):6359.
|
| [121] |
J. H. Zou, J. H. He, X. B. Wang, et al., “Glycoprotein Ib-RegulatedMicro Platelet Ghost for BiosafeDistribution and Photothermal Oncotherapy,” Journal of Controlled Release 351 (2022):341.
|
| [122] |
K. K. Ying, Y. F. Zhu, J. Q. Wan, et al., “Macrophage Membrane-Biomimetic Adhesive Polycaprolactone Nanocamptothecin for Improving Cancer-Targeting Efficiency and Impairing Metastasis,” Bioactive Materials 20 (2023):449.
|
| [123] |
Q. Q. Li, Z. Q. Shi, M. T. Ou, et al., “pH-Labile Artificial Natural Killer Cells for Overcoming Tumor Drug Resistance,” Journal of Controlled Release 352 (2022):450.
|
| [124] |
M. J. Li, F. Gao, Q. X. Huang, et al., “Natural Killer Cell-Mimicking Nanomaterial for Overcoming the Multidrug Resistance of Tumor via Cascade Catalysis,” Science China Materials 66 (2023):1215.
|
| [125] |
T. T. Wang, H. Zhang, Y. B. Han, et al., “Reversing T Cell Dysfunction to Boost Glioblastoma Immunotherapy by Paroxetine-Mediated GRK2 Inhibition and Blockade of Multiple Checkpoints through Biomimetic Nanoparticles,” Advanced Science 10 (2023):2204961.
|
| [126] |
X. Y. Ma, L. Kuang, Y. Yin, et al., “Tumor–Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma,” ACS Nano 17 (2023):2341.
|
| [127] |
F. Oroojalian, M. Beygi, B. Baradaran, A. Mokhtarzadeh, and M. A. Shahbazi, “Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy,” Small 17 (2021):2006484.
|
| [128] |
P. Y. Qi, J. Y. Zhang, Z. R. Bao, Y. P. Liao, Z. M. Liu, and J. Wang, “A Platelet-Mimicking Single-Atom Nanozyme for Mitochondrial Damage-Mediated Mild-Temperature Photothermal Therapy,” ACS Applied Materials &Interfaces 14 (2022):19081.
|
| [129] |
K. L. Ding, C. X. Zheng, L. L. Sun, X. X. Liu, Y. Y. Yin, and L. Wang, “NIR Light-Induced Tumor Phototherapy Using ICG Delivery System Based on Platelet-Membrane-Camouflaged Hollow Bismuth Selenide Nanoparticles,” Chinese Chemical Letters 31 (2020):1168.
|
| [130] |
J. J. Chen, Z. Y. Jiang, W. G. Xu, et al., “Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature,” Nano Letters 20 (2020):6191.
|
| [131] |
M. J. McKeage and B. C. Baguley, “Disrupting Established Tumor Blood Vessels,” Cancer 116 (2010):1859.
|
| [132] |
H. Z. Li, S. S. Zhou, M. Wu, et al., “Light-Driven Self-Recruitment of Biomimetic Semiconducting Polymer Nanoparticles for Precise Tumor Vascular Disruption,” Advanced Materials 35 (2023):2210920.
|
| [133] |
A. Falanga, L. Russo, V. Milesi, and A. Vignoli, “Mechanisms and Risk Factors of Thrombosis in Cancer,” Critical Reviews in Oncology/Hematology 118 (2017):79.
|
| [134] |
J. F. Timp, S. K. Braekkan, H. H. Versteeg, and S. C. Cannegieter, “Epidemiology of Cancer-Associated Venous Thrombosis,” Blood 122 (2013):1712.
|
| [135] |
H. Al-Samkari, A. B. Song, and J. M. Connors, “Cancer-Associated Thrombosis: Where Do We Stand?,” Advanced Cell and Gene Therapies 3 (2020): e73.
|
| [136] |
R. W. Kouam and T. Wang, “NCOG-05. Risk Factors for Prolonged Length of Stay and Postoperative Complications in Patients with Intramedullary Spinal Cord Tumors,” Neuro-Oncol 23 (2021): vi153.
|
| [137] |
Y. J. Hu, Y. Y. Chen, T. T. Liu, C. Zhu, L. Wan, and W. L. Yao, “The Bidirectional Roles of the cGAS-STING Pathway in Pain Processing: Cellular and Molecular Mechanisms,” Biomedicine &Pharmacotherapy 163 (2023):114869.
|
| [138] |
H. Y. Chen, J. Deng, Y. Wang, C. Q. Wu, X. Li, and H.W. Dai, “Hybrid Cell Membrane-Coated Nanoparticles: A Multifunctional Biomimetic Platform for Cancer Diagnosis and Therapy,” Acta Biomaterialia 112 (2020):1.
|
| [139] |
M. S. Diamond, D. E. Staunton, S. D. Marlin, and T. A. Springer, “Binding of the Integrin Mac-1 (CD11b/CD18) to the Third Immunoglobulin-Like Domain of ICAM-1 (CD54) and Its Regulation by Glycosylation,” Cell 65 (1991):961.
|
| [140] |
H. L. He, C. Q. Guo, J. Wang, et al., “Leutusome: A Biomimetic Nanoplatform Integrating PlasmaMembrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing,” Nano Letters 18 (2018):6164.
|
| [141] |
M. K. Zhang, J. J. Ye, Y. Xia, et al., “Platelet-Mimicking Biotaxis Targeting Vasculature-Disrupted Tumors for Cascade Amplification of Hypoxia-Sensitive Therapy,” ACS Nano 13 (2019):14230.
|
| [142] |
B. Z. Li, T. J. Chu, J. Y. Wei, et al., “Platelet-Membrane-Coated Nanoparticles Enable Vascular Disrupting Agent Combining Anti-Angiogenic Drug for Improved Tumor Vessel Impairment,” Nano Letters 21 (2021):2588.
|
| [143] |
H. J. Wang, J. Z. Wu, G. R. Williams, et al., “Platelet-Membrane-Biomimetic Nanoparticles for Targeted Antitumor Drug Delivery,” Journal of Nanbiotechnology 17 (2019):60.
|
| [144] |
M. Zhou, W. J. Lai, G. B. Li, et al., “Platelet Membrane-Coated and VAR2CSA Malaria Protein-Functionalized Nanoparticles for Targeted Treatment of Primary and Metastatic Cancer,” ACS Applied Materials &Interfaces 13 (2021):25635.
|
| [145] |
S. S. Tang, F. Y. Zhang, H. Gong, et al., “Enzyme-Powered Janus Platelet Cell Robots for Active and Targeted Drug Delivery,” Science Robotics 5 (2020): eaba6137.
|
| [146] |
J. X. Zhao, Y. Shi, L. X. Xue, et al., “Glucose-Decorated Engineering Platelets for Active and Precise Tumor-Targeted Drug Delivery,” Biomaterials Science 11 (2023):3965.
|
| [147] |
D. L. Xia, D. M. Hang, Y.Y. Li, et al., “Au–Hemoglobin Loaded Platelet Alleviating Tumor Hypoxia and Enhancing the Radiotherapy Effect with Low-Dose X-Ray,” ACS Nano 14 (2020):15654.
|
| [148] |
J. Zhuang, H. Gong, J. R. Zhou, et al., “Targeted Gene Silencing in Vivo by Platelet Membrane–coated Metal-Organic Framework Nanoparticles,” Science Advances 6 (2020): eaaz6108.
|
| [149] |
A. S. Krall and H. R. Christofk, “Rethinking Glutamine Addiction,” Nature Cell Biology 17 (2015):1515.
|
| [150] |
L. F. Kou, X. Y. Jiang, Y. Y. Tang, et al., “Resetting Amino Acid Metabolism of Cancer Cells by ATB0, +-Targeted Nanoparticles for Enhanced Anticancer therapy,” Bioactive Materials 9 (2022):15.
|
| [151] |
S. Liang, J. J. Yao, D. Liu, L. Rao, X. Y. Chen, and Z. H. Wang, “Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy,” Advanced Materials 35 (2023):2211130.
|
| [152] |
H. Dong, Q. Li, Y. Zhang, M. Ding, Z. G. Teng, and Y. B. Mou, “Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy,” Advanced Science 10 (2023):2301339.
|
| [153] |
W. J. Zhang, S. K. Li, Y. M. Liu, et al., “Immunosuppressive Microenvironment Improvement and Treatment of Aggressive Malignancy Pancreatic DuctalAdenocarcinoma Based on LocalAdministration of Injectable Hydrogel,” Nano Today 50 (2023):101832.
|
| [154] |
W. Ngwa, O. C. Irabor, J. D. Schoenfeld, J. Hesser, S. Demaria, and S. C. Formenti, “Using Immunotherapy to Boost the Abscopal Effect,” Nature Reviews Cancer 18 (2018):313.
|
| [155] |
S. M. Morrissey, F. Zhang, C. L. Ding, et al., “Tumor-Derived Exosomes Drive Immunosuppressive Macrophages in a Pre-Metastatic Niche through Glycolytic Dominant Metabolic Reprogramming,” Cell Metabolism 33 (2021):2040.
|
| [156] |
C. Sun, R. Mezzadra, and T. N. Schumacher, “Regulation and Function of the PD-L1 Checkpoint,” Immunity 48 (2018):434.
|
| [157] |
J. Yan, X. Liu, F. Wu, et al., “Platelet Pharmacytes for the Hierarchical Amplification of Antitumor Immunity in Response to Self-Generated Immune Signals,” Advanced Materials 34 (2022):2109517.
|
| [158] |
J. X. Fan, X. H. Liu, X. N. Wang, et al., “Antibody Engineered Platelets Attracted by Bacteria-Induced Tumor-Specific Blood Coagulation for Checkpoint Inhibitor Immunotherapy,” Advanced Functional Materials 31 (2021):2009744.
|
| [159] |
Z. J. Meng, X. Fang, B. W. Fu, et al., “Tumor Immunotherapy Boosted by R837 Nanocrystals through Combining Chemotherapy and Mild Hyperthermia,” Journal of Controlled Release 350 (2022):841.
|
| [160] |
H. L. Lei, J. H. Kim, S. Son, et al., “Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant Imiquimod,” ACS Nano 16 (2022):10979.
|
| [161] |
T. Liu, M. Zhu, X. W. Chang, et al., “Tumor-Specific Photothermal-Therapy-Assisted Immunomodulation via Multiresponsive Adjuvant Nanoparticles,” Advanced Materials 35 (2023):2300086.
|
| [162] |
Y. L. Lv, F. Li, S. Wang, et al., “Near-Infrared Light–Triggered Platelet Arsenal for Combined Photothermal-Immunotherapy against Cancer,” Science Advances 7 (2021): eabd7614.
|
| [163] |
H. Guo, Y. P. Liu, X. Li, et al., “MagneticMetal–Organic Framework-Based Nanoplatform with Platelet Membrane Coating as a Synergistic Programmed Cell Death Protein 1 Inhibitor against Hepatocellular Carcinoma,” ACS Nano 17 (2023):23829.
|
| [164] |
J. Guo, H. T. Zeng, X. M. Shi, et al., “A CFH Peptide-Decorated Liposomal Oxymatrine Inactivates Cancer-Associated Fibroblasts of Hepatocellular Carcinoma through Epithelial–Mesenchymal Transition Reversion,” Journal of Nanbiotechnology 20 (2022):114.
|
| [165] |
B. Jiang, Y. J. Yang, W. Z. Dang, et al., “Astragaloside IV Reverses Simvastatin-Induced Skeletal Muscle Injury by Activating the AMPK-PGC-1αSignalling Pathway,” Phytotherapy Research 34 (2020):1175.
|
| [166] |
M. J. Braunstein, J. Kucharczyk, and S. Adams, “Targeting Toll-Like Receptors for Cancer Therapy,” Targeted Oncology 13 (2018):583.
|
| [167] |
Y. Wei, G. Qin, Z. Wang, C. Q. Zhao, J. S. Ren, and X. G. Qu, “Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade,” ACS Nano 17 (2023):5808.
|
| [168] |
Q. Jiang, K. Wang, X. Y. Zhang, et al., “Platelet Membrane-Camouflaged Magnetic Nanoparticles for Ferroptosis-Enhanced Cancer Immunotherapy,” Small 16 (2020):2001704.
|
| [169] |
I. Melero, A. Rouzaut, G. T. Motz, and G. Coukos, “T-Cell and NKCell Infiltration into Solid Tumors: A Key Limiting Factor for Efficacious Cancer Immunotherapy,” Cancer Discovery 4 (2014):522.
|
| [170] |
X. H. Zheng, Z. H. Hou, Y. B. Qian, et al., “Tumors Evade Immune Cytotoxicity by Altering the Surface Topology of NK Cells,” Nature Immunology 24 (2023):802.
|
| [171] |
A. Merino, J. Maakaron, and V. Bachanova, “Advances in NK Cell Therapy for Hematologic Malignancies: NK Source, Persistence and Tumor Targeting,” Blood Reviews 60 (2023):101073.
|
| [172] |
M. N. Kararoudi, S. Likhite, E. Elmas, et al., “CD33 Targeting Primary CAR-NK Cells Generated by CRISPR Mediated Gene Insertion Show Enhanced Anti-AML Activity,” Blood 136 (2020):3.
|
| [173] |
Z. B. Zhang, Y. Zhang, S. Y. Xia, et al., “Gasdermin E Suppresses Tumour Growth by Activating Anti-Tumour Immunity,” Nature 579 (2020):415.
|
| [174] |
D. A. Mahvi, R. Liu, M. W. Grinstaff, Y. L. Colson, and C. P. Raut, “Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies,” CA: A Cancer Journal for Clinicians 68 (2018):488.
|
| [175] |
J. G. Hiller, N. J. Perry, G. Poulogiannis, B. Riedel, and E. K. Sloan, “Perioperative Events Influence Cancer Recurrence Risk after Surgery,” Nature Reviews Clinical Oncology 15 (2018):205.
|
| [176] |
J. H. Ren, J. Y. He, H. J. Zhang, et al., “Platelet TLR4-ERK5 Axis Facilitates NET-Mediated Capturing of Circulating Tumor Cells and Distant Metastasis after Surgical Stress,” Cancer Research 81 (2021):2373.
|
| [177] |
R. Demicheli, M. W. Retsky, W. J. M. Hrushesky, M. Baum, and I. D. Gukas, “The Effects of Surgery on Tumor Growth: A Century of Investigations,” Annals of Oncology 19 (2008):1821.
|
| [178] |
W. Ceelen, P. Pattyn, and M. Mareel, “Surgery, Wound Healing, and Metastasis: Recent Insights and Clinical Implications,” Critical Reviews in Oncology/Hematology 89 (2014):16.
|
| [179] |
V. C. Yang, “Personal Perspectives and Concerns over the So-Called Nanomedicine,” Journal of Controlled Release 311-312 (2019):322.
|
| [180] |
S. B. Kwak, S. J. Kim, J. Kim, et al., “Tumor Regionalization after Surgery: Roles of the Tumor Microenvironment and Neutrophil Extracellular Traps,” Experimental &Molecular Medicine 54 (2022):720.
|
| [181] |
W. P. Zou, J. D. Wolchok, and L. P. Chen, “PD-L1 (B7-H1) and PD-1 Pathway Blockade for Cancer Therapy: Mechanisms, Response Biomarkers, and Combinations,” Science Translational Medicine 8 (2016):328rv324.
|
| [182] |
X. Han, J. W. Chen, J. C. Chu, et al., “Platelets as Platforms for Inhibition of Tumor Recurrence Post-Physical Therapy by Delivery of Anti-PD-L1 Checkpoint Antibody,” Journal of Controlled Release 304 (2019):233.
|
| [183] |
Q. Lu, H. Ye, K. Y. Wang, et al., “Bioengineered Platelets Combining Chemotherapy and Immunotherapy for Postsurgical Melanoma Treatment: Internal Core-Loaded Doxorubicin and External Surface-Anchored Anti-PD-L1 Antibody Backpacks,” Nano Letters 22 (2022):3141.
|
| [184] |
Y. Tsuchiya, S. Sawada, I. Yoshioka, et al., “Increased Surgical Stress Promotes Tumor Metastasis,” Surgery 133 (2003):547.
|
| [185] |
J. L. Benci, L. R. Johnson, R. Choa, et al., “Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade,” Cell 178 (2019):933.
|
| [186] |
S. Spranger, R.M. Spaapen, Y. Y. Zha, et al., “Up-Regulation of PD-L1, IDO, and T Regs in the Melanoma TumorMicroenvironment Is Driven by CD8+T Cells,” Science Translational Medicine 5 (2013):200ra116.
|
| [187] |
Q. Li, Y. X. Zhou, W. D. He, et al., “Platelet-Armored Nanoplatform to Harmonize Janus-Faced IFN-γagainst Tumor Recurrence and Metastasis,” Journal of Controlled Release 338 (2021):33.
|
| [188] |
X. Y. Fan, K. Y. Wang, Q. Lu, et al., “Surface-Anchored Tumor Microenvironment-Responsive Protein Nanogel-Platelet System for Cytosolic Delivery of Therapeutic Protein in the Post-Surgical Cancer Treatment,” Acta Biomaterialia 154 (2022):412.
|
| [189] |
R. Han, L. T. Yu, C. X. Zhao, et al., “Inhibition of SerpinB9 to Enhance Granzyme B-Based Tumor Therapy by Using a Modified Biomimetic Nanoplatform with a Cascade Strategy,” Biomaterials 288 (2022):121723.
|
| [190] |
L. L. Xu, N.H. Liu, W. J. Zhan, et al., “Granzyme B TurnsNanoparticle Fluorescence “On” for Imaging Cytotoxic T Lymphocyte Activity in Vivo,” ACS Nano 16 (2022):19328.
|
| [191] |
J. J. Wei, D. Wu, Y. Shao, et al., “ApoE-Mediated Systemic Nanodelivery of Granzyme B and CpG for Enhanced Glioma Immunotherapy,” Journal of Controlled Release 347 (2022):68.
|
| [192] |
Y. Z. Jin, Y. Y. Huang, H. Ren, et al., “Nano-Enhanced Immunotherapy: Targeting the Immunosuppressive Tumor Microenvironment,” Biomaterials 305 (2024):122463.
|
| [193] |
K. Zhang, Y.Y. Long, Z.Y. Ma, S. T. Li, Y. L. Zhao, and H.Y. Han, “Artificial Nanoplatelet Regulation of Tumor Immune Microenvironment to Inhibit Post-Surgical Tumor Recurrence and Lung Metastasis,” Materials Today 67 (2023):68.
|
| [194] |
W. A Freed-Pastor, L. J. Lambert, Z. A. Ely, et al., “The CD155/TIGIT Axis Promotes and Maintains Immune Evasion inNeoantigen-Expressing Pancreatic Cancer,” Cancer Cell 39 (2021):1342.
|
| [195] |
X. Y. Liu, M. E. Inda, Y. Lai, T. K. Lu, and X. H. Zhao, “Engineered Living Hydrogels,” Advanced Materials 34 (2022):2201326.
|
| [196] |
Q. H. Qian, J. Song, C. Chen, Q. Pu, X. C. Liu, and H. L. Wang, “Recent Advances in Hydrogels for Preventing Tumor Recurrence,” Biomaterials Science 11 (2023):2678.
|
| [197] |
A. Erfani, A. E. Diaz, and P. S. Doyle, “Hydrogel-Enabled, Local Administration and Combinatorial Delivery of Immunotherapies for Cancer Treatment,” Materials Today 65 (2023):227.
|
| [198] |
C. Y. Li, Y. L. Wan, Y. F. Zhang, et al., “In Situ Sprayed Starvation/Chemodynamic Therapeutic Gel for Post-Surgical Treatment of IDH1 (R132H) Glioma,” Advanced Materials 34 (2022):2103980.
|
| [199] |
B. B. Chu, S. C. Wu, Y. M. Yang, B. Song, H. Y. Wang, and Y. He, “Multifunctional Flavonoid-Silica Nanohydrogel Enables Simultaneous Inhibition of Tumor Recurrence and Bacterial Infection in Post-Surgical Treatment,” Small 18 (2022):2104578.
|
| [200] |
Q. Chen, C. Wang, X. D. Zhang, et al., “In Situ Sprayed Bioresponsive Immunotherapeutic Gel for Post-Surgical Cancer Treatment,” Nature Nanotechnology 14 (2019):89.
|
| [201] |
R. Haldar and S. Ben-Eliyahu, “Reducing the Risk of Post-Surgical Cancer Recurrence: A Perioperative Anti-Inflammatory Anti-Stress Approach,” Future Oncology 14 (2018):1017.
|
| [202] |
O. Bakos, C. Lawson, S. Rouleau, and L. H. Tai, “Combining Surgery and Immunotherapy: Turning an Immunosuppressive Effect into a Therapeutic Opportunity,” Journal for ImmunoTherapy of Cancer 6 (2018):86.
|
| [203] |
R. B. Zhong, S. Talebian, B. B. Mendes, et al., “Hydrogels for RNA Delivery,” Nature Materials 22 (2023):818.
|
| [204] |
L. Schito, S. Rey, M. Tafani, et al., “Hypoxia-Inducible Factor 1-Dependent Expression of Platelet-Derived Growth Factor B Promotes LymphaticMetastasis of Hypoxic Breast Cancer Cells,” Proceedings of the National Academy of Science of the United States of America 109 (2012):2707.
|
| [205] |
A. T. Franco, A. Corken, and J. Ware, “Platelets at the Interface of Thrombosis, Inflammation, and Cancer,” Blood 126 (2015):582.
|
| [206] |
S. Asghar, F. Parvaiz, and S. Manzoor, “Multifaceted Role of Cancer Educated Platelets in Survival of Cancer Cells,” Thrombosis Research 177 (2019):42.
|
| [207] |
P. Kanikarla-Marie, M. Lam, D. G. Menter, and S. Kopetz, “Platelets, Circulating Tumor Cells, and the Circulome,” Cancer and Metastasis Reviews 36 (2017):235.
|
| [208] |
Y. L. Zhang, J. Y. Wei, S. L. Liu, et al., “Inhibition of Platelet Function Using Liposomal Nanoparticles Blocks Tumor Metastasis,” Theranostics 7 (2017):1062.
|
| [209] |
A. J. Gareau, C. Brien, S. Gebremeskel, R. S. Liwski, B. Johnston, and M. Bezuhly, “Ticagrelor Inhibits Platelet–Tumor Cell Interactions and Metastasis inHumanand Murine Breast Cancer,” Clinical&Experimental Metastasis 35 (2018):25.
|
| [210] |
S. L. Liu, Y. L. Zhang, X. Zhao, et al., “Tumor-Specific Silencing of Tissue Factor Suppresses Metastasis and Prevents Cancer-Associated Hypercoagulability,” Nano Letters 19 (2019):4721.
|
| [211] |
Y. Xu, J. W. Liu, Z. Y. Liu, et al., “Blockade of Platelets Using Tumor-Specific NO-Releasing Nanoparticles Prevents Tumor Metastasis and Reverses Tumor Immunosuppression,” ACS Nano 14 (2020):9780.
|
| [212] |
S. J. Li, L. Li, X. Lin, C. Chen, C. H. Luo, and Y. Huang, “Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug DeliveryMitigates Cancer Metastasis,” ACS Nano 16 (2022):50.
|
| [213] |
D. F. Lin, L. Shen, M. Luo, et al., “Circulating Tumor Cells: Biology and Clinical Significance,” Signal Transduction and Targeted Therapy 6 (2021):404.
|
| [214] |
A. Ring, B. D. Nguyen-Sträuli, A. Wicki, and N. Aceto, “Biology, Vulnerabilities and Clinical Applications of Circulating Tumour Cells,” Nature Reviews Cancer 23 (2023):95.
|
| [215] |
L. J. Gay and B. Felding-Habermann, “Contribution of Platelets to Tumour Metastasis,” Nature Reviews Cancer 11 (2011):123.
|
| [216] |
S. Kumar, J. A. Han, I. J. Michael, et al., “Human PlateletMembrane Functionalized Microchips with Plasmonic Codes for Cancer Detection,” Advanced Functional Materials 29 (2019):1902669.
|
| [217] |
Z. M. Luo, S. Y. Wu, J. F. Zhou, et al., “All-Stage Targeted Therapy for the Brain Metastasis from Triple-Negative Breast Cancer,” Acta Pharmaceutica Sinica B 13 (2023):359.
|
| [218] |
L. Gorelik and R. A. Flavell, “Abrogation of TGFβSignaling in T Cells Leads to Spontaneous T Cell Differentiation and Autoimmune Disease,” Immunity 12 (2000):171.
|
| [219] |
Y. Liu and X. T. Cao, “Characteristics and Significance of the Pre-Metastatic Niche,” Cancer Cell 30 (2016):668.
|
| [220] |
J. Zhu, R. Wang, C. X. Yang, et al., “Blocking Tumor-Platelet Crosstalk to Prevent Tumor Metastasis via Reprograming Glycolysis Using Biomimetic Membrane-Hybridized Liposomes,” Journal of Controlled Release 366 (2024):328.
|
| [221] |
Y. X. Yang, Y. F. Wang, Y. J. Yao, et al., “T Cell-Mimicking Platelet-Drug Conjugates,” Matter 6 (2023):2340.
|
| [222] |
Y. X. Guo, X. Ji, J. B. Liu, et al., “Effects of Exosomes on Pre-Metastatic Niche Formation in Tumors,” Molecular Cancer 18 (2019):39.
|
| [223] |
H. Ye, K. Y. Wang, Q. Lu, et al., “Nanosponges of Circulating Tumor-Derived Exosomes for Breast Cancer Metastasis Inhibition,” Biomaterials 242 (2020):119932.
|
| [224] |
I. Voskoboinik, J. C. Whisstock, and J. A. Trapani, “Perforin and Granzymes: Function, Dysfunction and Human Pathology,” Nature Reviews Immunology 15 (2015):388.
|
| [225] |
B. L. LeSavage, R. A. Suhar, N. Broguiere, M. P. Lutolf, and S. C. Heilshorn, “Next-Generation Cancer Organoids,” Nature Materials 21 (2022):143.
|
| [226] |
Z. X. Zhao, X. Y. Chen, A. M. Dowbaj, et al., “Organoids,” Nature Reviews Methods Primers 2 (2022):94.
|
| [227] |
S. Gerstberger, Q. W. Jiang, and K. Ganesh, “Metastasis,” Cell 186 (2023):1564.
|
RIGHTS & PERMISSIONS
2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.