A Flexible Antibacterial Gel Electrochemiluminescence Device for Monitoring and Therapy of Chronic Diabetic Wounds

Yuzhu Yuan , Dafeng Yan , Ruixue Duan , Huayu Xiong , Wei Wen , Shengfu Wang , Xiuhua Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e703

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (3) : e703 DOI: 10.1002/agt2.703
RESEARCH ARTICLE

A Flexible Antibacterial Gel Electrochemiluminescence Device for Monitoring and Therapy of Chronic Diabetic Wounds

Author information +
History +
PDF

Abstract

The rapid development of internal light-driven photodynamic therapy stems from its capability to eliminate bulky physical light sources, addressing the medical requirements for comfort and portability in long-term diabetic wound management. To overcome limitations such as tissue penetration depth and controllability of internal light sources, this study introduces an antibacterial gel electrochemiluminescence device for the treatment of diabetic wounds and the monitoring of wound bacteria. We deploy a large-area luminescent device combining flexible screen-printed electrodes and a dual-network hydrogel, in which photodynamic therapy is driven by Ru@COFs' nanoconfinement-enhanced near-infrared electrochemiluminescence to achieve a deeper and safer antibacterial effect. The custom-sized screen-printed electrodes inherit the inborn electrochemical sensing function and enable intimate contact between reactive oxygen species and the wound. The device avoids physical light sources and provides a new paradigm for developing miniaturized integrated diagnostic and therapeutic wearable devices.

Keywords

diabetic wound / electrochemiluminescence / photodynamic therapy / wound healing

Cite this article

Download citation ▾
Yuzhu Yuan, Dafeng Yan, Ruixue Duan, Huayu Xiong, Wei Wen, Shengfu Wang, Xiuhua Zhang. A Flexible Antibacterial Gel Electrochemiluminescence Device for Monitoring and Therapy of Chronic Diabetic Wounds. Aggregate, 2025, 6(3): e703 DOI:10.1002/agt2.703

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Zhao, Y. Li, and J. Zhao, “A “Test-to-Treat” Pad for Real-Time Visual Monitoring of Bacterial Infection and on-Site Performing Smart Therapy Strategies,” ACS Nano 17 (2023): 13296-13309.

[2]

X. Zhu, T. Feng, and Y. Chen, “Reactive Oxygen-Correlated Photothermal Imaging of Smart COF Nanoreactors for Monitoring Chemodynamic Sterilization and Promoting Wound Healing,” Small 20 (2024): 2310247.

[3]

K. E. Jones, N. G. Patel, and M. A. Levy, “Global Trends in Emerging Infectious Diseases,” Nature 451 (2008): 990-993.

[4]

J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu, and L. J. Piddock, “Molecular Mechanisms of Antibiotic Resistance,” Nature Reviews Microbiology 13 (2015): 42-51.

[5]

L. Jiang, C. R. Gan, J. Gao, and X. J. Loh, “A Perspective on the Trends and Challenges Facing Porphyrin-Based Anti-Microbial Materials,” Small 12 (2016): 3609-3644.

[6]

Q. Jia, Q. Song, P. Li, and W. Huang, “Rejuvenated Photodynamic Therapy for Bacterial Infections,” Advanced Healthcare Materials 8 (2019): e1900608.

[7]

M. Yang, S. Qiu, and E. Coy, “NIR-Responsive TiO 2 Biometasurfaces: Toward in Situ Photodynamic Antibacterial Therapy for Biomedical Implants,” Advanced Materials 34 (2022): e2106314.

[8]

D. W. Felsher, “Cancer Revoked: Oncogenes as Therapeutic Targets,” Nature Reviews Cancer 3 (2003): 375-380.

[9]

W. Fan, P. Huang, and X. Chen, “Overcoming the Achilles' Heel of Photodynamic Therapy,” Chemical Society Reviews 45 (2016): 6488-6519.

[10]

M. Piksa, C. Lian, I. C. Samuel, K. J. Pawlik, I. D. W. Samuel, and K. Matczyszyn, “The Role of the Light Source in Antimicrobial Photodynamic Therapy,” Chemical Society Reviews 52 (2023): 1697-1722.

[11]

H. Yuan, H. Chong, and B. Wang, “Chemical Molecule-Induced Light-Activated System for Anticancer and Antifungal Activities,” Journal of the American Chemical Society 134 (2012): 13184-13187.

[12]

N. Hananya and D. Shabat, “A Glowing Trajectory between Bio- and Chemiluminescence: From Luciferin-Based Probes to Triggerable Dioxetanes,” Angewandte Chemie International Edition 56 (2017): 16454-16463.

[13]

K. Yang, C. Wang, and X. Wei, “Self-Illuminating Photodynamic Therapy with Enhanced Therapeutic Effect by Optimization of the Chemiluminescence Resonance Energy Transfer Step to the Photosensitizer,” Bioconjugate Chemistry 31 (2020): 595-604.

[14]

J. F. Han, L. Qing, and Z. Z. Ding, “Chemiluminescent Carbon Nanodots for Dynamic and Guided Antibacteria,” Light: Science & Applications 12 (2023): 104.

[15]

J. Zhang, Q. Jia, and Z. Yue, “An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drug-Resistant Bacteria,” Advanced Materials 34 (2022): e2200334.

[16]

S. Liu, H. Yuan, and H. Bai, “Electrochemiluminescence for Electric-Driven Antibacterial Therapeutics,” Journal of the American Chemical Society 140 (2018): 2284-2291.

[17]

M. M. Chen, C. H. Xu, W. Zhao, H. Y. Chen, and J. J. Xu, “Single Cell Imaging of Electrochemiluminescence-Driven Photodynamic Therapy,” Angewandte Chemie International Edition 61 (2022): e202117401.

[18]

M. M. Richter, “Electrochemiluminescence (ECL),” Chemical Reviews 104 (2004): 3003-3036.

[19]

W. J. Miao, J. P. Choi, and A. J. Bard, “Electrogenerated Chemiluminescence 69: the Tris(2,2′-bipyridine)Ruthenium(II), (Ru(bpy) 32+)/Tri- n -propylamine (TPrA) System RevisitedA New Route Involving TPrA•+ Cation Radicals,” Journal of the American Chemical Society 124 (2002): 4478-14485.

[20]

L. Hu and G. Xu, “Applications and Trends in Electrochemiluminescence,” Chemical Society Reviews 39 (2010): 3275-3304.

[21]

L. Li, Y. Chen, and J. J. Zhu, “Recent Advances in Electrochemiluminescence Analysis,” Analytical Chemistry 89 (2017): 358-371.

[22]

H. C. Moon, T. P. Lodge, and C. D. Frisbie, “Solution-Processable Electrochemiluminescent Ion Gels for Flexible, Low-Voltage, Emissive Displays on Plastic,” Journal of the American Chemical Society 136 (2014): 3705-3712.

[23]

E.-S. Ko, J. I. Lee, and H. C. Lim, “Pulsed Driving Methods for Enhancing the Stability of Electrochemiluminescence Devices,” ACS Photonics 5 (2018): 3723-3730.

[24]

K. G. Cho, J. I. Lee, S. Lee, K. Hong, M. S. Kang, and K. H. Lee, “Light-Emitting Devices Based on Electrochemiluminescence Gels,” Advanced Functional Materials 30 (2020): 1907936.

[25]

D.-K. Kwon and J.-M. Myoung, “Ion Gel-Based Flexible Electrochemiluminescence Full-Color Display with Improved Sky-Blue Emission Using a Mixed-Metal Chelate System,” Chemical Engineering Journal 379 (2020): 122347.

[26]

Y. Zhang, Y. Zhu, and S. Zheng, “Ink Formulation, Scalable Applications and Challenging Perspectives of Screen Printing for Emerging Printed Microelectronics,” Journal of Energy Chemistry 63 (2021): 498-513.

[27]

V. B. Nascimento “Eletrodos Fabricados for “Silk-Screen”,” Quimica Nova 5 (1998): 21.

[28]

X. Li, X. Huang, and J. Mo, “A Fully Integrated Closed-Loop System Based on Mesoporous Microneedles-Iontophoresis for Diabetes Treatment,” Advancement of Science 8 (2021): e2100827.

[29]

K. Zhou, D. Chigan, and L. Xu, “Anti-Sandwich Structured Photo-Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy,” Small 17 (2021): e2101858.

[30]

Z. Wang, H. Guo, Z. Luo, Y. Duan, and Y. Feng, “Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose,” Analytical Chemistry 94 (2022): 5615-5623.

[31]

Z. Wang, H. Wei, Y. Huang, Y. Wei, and J. Chen, “Naturally Sourced Hydrogels: Emerging Fundamental Materials for next-generation Healthcare Sensing,” Chemical Society Reviews 52 (2023): 2992-3034.

[32]

L. Wang, Y. Luo, Y. Song, X. He, T. Xu, and X. Zhang, “Hydrogel-Functionalized Bandages with Janus Wettability for Efficient Unidirectional Drug Delivery and Wound Care,” ACS Nano 18 (2024): 3468-3479.

[33]

M. Haktaniyan and M. Bradley, “Polymers Showing Intrinsic Antimicrobial Activity,” Chemical Society Reviews 51 (2022): 8584-8611.

[34]

W. Ma, Q. Zheng, and Y. He, “Size-Controllable Synthesis of Uniform Spherical Covalent Organic Frameworks at Room Temperature for Highly Efficient and Selective Enrichment of Hydrophobic Peptides,” Journal of the American Chemical Society 141 (2019): 18271-18277.

[35]

Y. Liu, H. Zhang, and B. Li, “Single Biomolecule Imaging by Electrochemiluminescence,” Journal of the American Chemical Society 143 (2021): 17910-17914.

[36]

B. Li, X. Huang, and Y. Lu, “High Electrochemiluminescence from Ru(bpy)32+ Embedded Metal-Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane,” Advancement of Science 9 (2022): e2204715.

[37]

X. Huang, B. Li, and Y. Lu, “Direct Visualization of Nanoconfinement Effect on Nanoreactor via Electrochemiluminescence Microscopy,” Angewandte Chemie International Edition 62 (2023): e202215078.

[38]

Y. Lu, X. Huang, S. Wang, B. Li, and B. Liu, “Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules,” ACS Nano 17 (2023): 3809-3817.

[39]

G. Valenti, S. Scarabino, and B. Goudeau, “Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis,” Journal of the American Chemical Society 139 (2017): 16830-16837.

[40]

Y. Zhou, J. Dong, P. Zhao, J. Zhang, M. Zheng, and J. Feng, “Imaging of Single Bacteria with Electrochemiluminescence Microscopy,” Journal of the American Chemical Society 145 (2023): 8947-8953.

[41]

S. Liao, M. Cai, and R. Zhu, “Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin e6 and Other Applications,” Molecular Pharmaceutics 20 (2023): 875-885.

[42]

L. Yang and R. Bashir, “Electrical/Electrochemical Impedance for Rapid Detection of Foodborne Pathogenic Bacteria,” Biotechnology Advances 26 (2008): 135-150.

[43]

A. L. Furst and M. B. Francis, “Impedance-Based Detection of Bacteria,” Chemical Reviews 119 (2019): 700-726.

[44]

L. L. Yao, Z. Zhou, and S. X. Wang, “Phosphorylation of Covalent Organic Framework Nanospheres for Inhibition of Amyloid-β Peptide Fibrillation,” Chemical Science 13 (2022): 5902.

[45]

Z. Peng, H. Wang, and L. Zhou, “Hollow Carbon Shells Enhanced by Confined Ruthenium as Cost-efficient and Superior Catalysts for the Alkaline Hydrogen Evolution Reaction,” Journal of Materials Chemistry A 7 (2019): 6676-6685.

[46]

C. R. Wang, X. Jiang, and H. J. Kim, “Flexible Patch with Printable and Antibacterial Conductive Hydrogel Electrodes for Accelerated Wound Healing,” Biomaterials 285 (2022): 121479.

[47]

V. Loi, T. Busche, and B. Kuropka, “Staphylococcus aureus Adapts to the Immunometabolite Itaconic Acid by Inducing Acid and Oxidative Stress Responses Including S-bacillithiolations and S-itaconations,” Free Radical Biology and Medicine 208 (2023): 859-876.

[48]

R. T. Cirz, M. B. Jones, and N. A. Gingles, “Complete and SOS-Mediated Response of Staphylococcus aureus to the Antibiotic Ciprofloxacin,” Journal of Bacteriology 189 (2007): 531-539.

[49]

J. Lagos, P. Alarcon, and D. Benadof, “Novel Nonsense Mutation in the katA Gene of a Catalase-negative Staphylococcus aureus Strain,” Brazilian Journal of Microbiology 47 (2016): 177-180.

[50]

A. Ballal and A. C. Manna, “Control of Thioredoxin Reductase Gene (trxB) Transcription by SarA in Staphylococcus Aureus,” Journal of Bacteriology 192 (2010): 336-345.

[51]

C. E. Butrico, N. Klopfenstein, E. R. Green, et al., “Hyperglycemia increases severity of staphylococcus aureus osteomyelitis and influences bacterial genes required for survival in bone,” Infection and Immunity 91 (2023): 0052922.

[52]

D. J. Wozniak, K. B. Tiwari, R. Soufan, and R. Jayaswal, “The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus,” Microbiology (2012): 158.

[53]

D. Guziejewski, S. Smarzewska, and V. Mirceski, “Analytical Aspects of Novel Techniques Derived from Square-Wave Voltammetry,” Journal of the Electrochemical Society 170 (2023): 066503.

[54]

C. Shi, Y. Tang, and H. Yang, “Capture and Detection of Escherichia Coli with Graphene Aerogels,” Journal of Materials Chemistry B 10 (2022): 8211-8217.

RIGHTS & PERMISSIONS

2024 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/