Reversible Self-Assembly of Monosaccharide-Based Nanoparticles With Reversible Fluorescence Modulation

Cheng Li , Wenbin Liu , Evgeny Nimerovsky , Loren B. Andreas , Philipp Vana , Caoxing Huang , Qiyun Tang , Kai Zhang

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70142

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70142 DOI: 10.1002/agt2.70142
RESEARCH ARTICLE

Reversible Self-Assembly of Monosaccharide-Based Nanoparticles With Reversible Fluorescence Modulation

Author information +
History +
PDF

Abstract

Reversible self-assembly of nanoparticles remains challenging due to limited molecular mobility. Moreover, reported successful examples typically rely on inorganic-core nanoparticles that require surface pre-functionalization with specific stimuli-responsive ligands. Here, we demonstrate reversible self-assembly of organic nanoparticles through the selective self-modulation of aliphatic chains, without the need for prior modification with external stimuli-responsive ligands. D-glucose 11-octadecylthioundecanoate (D-Glc-C11S18E) self-assembles into microspheres (3–6 µm) comprising nanospheres (100–300 nm). Within these nanospheres, octadecylthioundecanoyl (C29) groups form interior crystalline domains (C29 lamella) while octadecyl (C18) chains organize at nanosphere interfaces (C18 lamella). Thermal triggering enables selective reversibility: at 50°C, the C18 lamella dissociates into disordered structures while the C29 lamella remains intact; cooling to 20°C regenerates the C18 lamella. In methanol, this process drives reversible microsphere-nanosphere morphological transitions (validated by scanning electron microscopy/dynamic light scattering), accompanied by a reversible fluorescence modulation. Both structural and optical modulations exhibit no apparent fatigue over 10 consecutive cycles. Energy decomposition analysis reveals stronger C29 binding energy (ΔEint = –29.80 kcal/mol vs. C18's –19.90 kcal/mol), explaining selective reversibility. Density functional theory calculations confirm the distinct highest occupied molecular orbital-lowest unoccupied molecular orbital gaps correlating with emission wavelengths. Leveraging the temperature/wavelength-dependent fluorescence, we constructed a multi-input logic gate. This work establishes a new insight for reversible assembly and enables smart and fatigue-resistant optoelectronic applications.

Keywords

clustering-triggered emission / nanoparticles / nonconventional luminophores / reversible self-assembly

Cite this article

Download citation ▾
Cheng Li, Wenbin Liu, Evgeny Nimerovsky, Loren B. Andreas, Philipp Vana, Caoxing Huang, Qiyun Tang, Kai Zhang. Reversible Self-Assembly of Monosaccharide-Based Nanoparticles With Reversible Fluorescence Modulation. Aggregate, 2025, 6(10): e70142 DOI:10.1002/agt2.70142

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Liu, L. Jiang, B. Cao, et al., “Van der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution,” ACS Nano 16 (2022): 14539-14548.

[2]

T. Bian, A. Gardin, J. Gemen, et al., “Electrostatic Co-Assembly of Nanoparticles With Oppositely Charged Small Molecules Into Static and Dynamic Superstructures,” Nature Chemistry 13 (2021): 940-949.

[3]

X.-Y. Lou, K. Zhang, Y. Bai, S. Zhang, Y. Li, and Y.-W. Yang, “Self-Assembled Nanohelixes Driven by Host-Guest Interactions and Metal Coordination,” Angewandte Chemie International Edition 64 (2025): e202414611.

[4]

M. Li, C. Wang, Z. Di, et al., “Engineering Multifunctional DNA Hybrid Nanospheres Through Coordination-Driven Self-Assembly,” Angewandte Chemie International Edition 58 (2019): 1350-1354.

[5]

C. Ji, F. Zeng, W. Xu, et al., “Hydrogen Bond-Mediated Self-Assembly of Carbon Dots Enabling Precise Tuning of Particle and Cluster Luminescence for Advanced Optoelectronic Applications,” Advanced Materials 37 (2025): 2414450.

[6]

L. R. MacFarlane, H. Shaikh, J. D. Garcia-Hernandez, M. Vespa, T. Fukui, and I. Manners, “Functional Nanoparticles Through π-Conjugated Polymer Self-Assembly,” Nature Reviews Materials 6 (2021): 7-26.

[7]

H.-B. Cheng, X. Cao, S. Zhang, et al., “BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications,” Advanced Materials 35 (2023): 2207546.

[8]

W. Zhang, M.-Q. Liu, and Y. Luo, “Chiral Amplification and Regulation: Design and Applications of Circularly Polarized Luminescence-Active Materials Derived From Macrocyclic Compounds,” Aggregate 6 (2025): e70039.

[9]

C. Li, O. Arteaga, F. Ehlers, et al., “Self-Assembled Small Molecule Spherulites Under Mild Conditions: High Solid-State Quantum Yield and Unique Interconnected Structural and Fluorescent Colors,” Aggregate 6 (2025): e695.

[10]

W. Yuan, S. Lu, X. Li, et al., “Helically Assembled Rare Earth Fluoride Nanoparticles With Multicolor Circularly Polarized Luminescence for High-Security Anti-Counterfeiting,” Aggregate 6 (2025): e70042.

[11]

M. Liu, L. Zhang, and T. Wang, “Supramolecular Chirality in Self-Assembled Systems,” Chemical Reviews 115 (2015): 7304-7397.

[12]

M. Trivedi, D. Saxena, W. K. Ng, R. Sapienza, and G. Volpe, “Self-Organized Lasers From Reconfigurable Colloidal Assemblies,” Nature Physics 18 (2022): 939-944.

[13]

D. Gentili and G. Ori, “Reversible Assembly of Nanoparticles: Theory, Strategies and Computational Simulations,” Nanoscale 14 (2022): 14385-14432.

[14]

H. He, M. Feng, Q. Chen, X. Zhang, and H. Zhan, “Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized With Coumarin Ligands,” Angewandte Chemie International Edition 55 (2016): 936-940.

[15]

R. Klajn, K. J. M. Bishop, and B. A. Grzybowski, “Light-Controlled Self-Assembly of Reversible and Irreversible Nanoparticle Suprastructures,” Proceedings of the National Academy of Sciences 104 (2007): 10305-10309.

[16]

Y. Chen, Z. Wang, Y. He, et al., “Light-Enabled Reversible Self-Assembly and Tunable Optical Properties of Stable Hairy Nanoparticles,” Proceedings of the National Academy of Sciences 115 (2018): E1391-E1400.

[17]

K. T. Mahmudov, M. N. Kopylovich, M. F. C. Guedes da Silva, and A. J. L. Pombeiro, “Non-Covalent Interactions in the Synthesis of Coordination Compounds: Recent Advances,” Coordination Chemistry Reviews 345 (2017): 54-72.

[18]

K. Müller-Dethlefs and P. Hobza, “Noncovalent Interactions:  A Challenge for Experiment and Theory,” Chemical Reviews 100 (2000): 143-168.

[19]

E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, “Revealing Noncovalent Interactions,” Journal of the American Chemical Society 132 (2010): 6498-6506.

[20]

J. Contreras-García, E. R. Johnson, S. Keinan, et al., “NCIPLOT: A Program for Plotting Noncovalent Interaction Regions,” Journal of Chemical Theory and Computation 7 (2011): 625-632.

[21]

J. Chen, Q. Peng, X. Peng, H. Zhang, and H. Zeng, “Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems,” Chemical Reviews 122 (2022): 14594-14678.

[22]

Z. Zhao, A. Li, and W. Z. Yuan, “Nonconventional Luminophores: Emission Mechanism, Regulation, and Applications,” Accounts of Chemical Research 58 (2025): 612-624.

[23]

S. Tang, T. Yang, Z. Zhao, et al., “Nonconventional Luminophores: Characteristics, Advancements and Perspectives,” Chemical Society Reviews 50 (2021): 12616-12655.

[24]

M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch, and M. Heeney, “X-Ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2- b]thiophene),” Journal of the American Chemical Society 129 (2007): 3226-3237.

[25]

X. Chen, N. Zheng, Q. Wang, L. Liu, and Y. Men, “Side-Chain Crystallization in Alkyl-Substituted Cellulose Esters and Hydroxypropyl Cellulose Esters,” Carbohydrate Polymers 162 (2017): 28-34.

[26]

J. E. Sealey, G. Samaranayake, J. G. Todd, and W. G. Glasser, “Novel Cellulose Derivatives. IV. Preparation and Thermal Analysis of Waxy Esters of Cellulose,” Journal of Polymer Science Part B: Polymer Physics 34 (1996): 1613-1620.

[27]

T. Lu and Q. Chen, “Simple, Efficient, and Universal Energy Decomposition Analysis Method Based on Dispersion-Corrected Density Functional Theory,” The Journal of Physical Chemistry A 127 (2023): 7023-7035.

[28]

K. Zhang, A. Geissler, X. Chen, et al., “Polymeric Flower-Like Microparticles From Self-Assembled Cellulose Stearoyl Esters,” ACS Macro Letters 4 (2015): 214-219.

[29]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 16, Revision B.01 (Gaussian, Inc.; 2016).

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/