Dopant Deuteration Enables Long-lived Room-temperature Phosphorescence

Zheng Yin , Qi Sun , Zhu Wu , Yincai Xu , Zongliang Xie , Bin Liu

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70141

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70141 DOI: 10.1002/agt2.70141
RESEARCH ARTICLE

Dopant Deuteration Enables Long-lived Room-temperature Phosphorescence

Author information +
History +
PDF

Abstract

Organic host–guest systems exhibiting room-temperature phosphorescence (RTP) hold great promise for sensing, encryption, and bioimaging. However, achieving both long lifetimes and high efficiency remains challenging, as enhanced spin–orbit coupling (SOC) often competes with efficient intersystem crossing (ISC). We report an isotope-engineering strategy that overcomes the lifetime–efficiency trade-off in classical carbazole (Cz) host–guest systems. Doping just 0.5 wt% of deuterated 1H-benzo[f]indole (BdD8) into Cz extends the RTP lifetime from 0.485 to 1.771 s, a 3.65-fold enhancement without compromising the phosphorescence quantum yield. Replacing the N–H group in BdD8 with a CD3 moiety (BdD8CD3) and using a methylated host (CzCH3) further extends the RTP lifetime to 1.870 s. This improvement arises from isotope-induced suppression of non-radiative decay and enhancement of ISC, as evidenced by a reduction in the non-radiative rate from 2.01 to 0.51 s−1 and an increase in the ISC rate from 4.91 × 107 s−1 to 6.21 × 107 s−1. Building on this success, we applied the strategy to benzo[b]carbazole (BCz) derivatives, which similarly exhibited enhanced RTP performance. Finally, we demonstrate time-resolved multi-information encoding enabled by this ultralong afterglow system.

Keywords

deuteration / intersystem crossing / isotope effects / non-radiative decay / room-temperature phosphorescence

Cite this article

Download citation ▾
Zheng Yin, Qi Sun, Zhu Wu, Yincai Xu, Zongliang Xie, Bin Liu. Dopant Deuteration Enables Long-lived Room-temperature Phosphorescence. Aggregate, 2025, 6(10): e70141 DOI:10.1002/agt2.70141

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Zhao, Z. He, and B. Z. Tang, “Room-Temperature Phosphorescence From Organic Aggregates,” Nature Reviews Materials 5 (2020): 869-885.

[2]

H. Shi, W. Yao, W. Ye, H. Ma, W. Huang, and Z. An, “Ultralong Organic Phosphorescence: From Material Design to Applications,” Accounts of Chemical Research 55 (2022): 3445-3459.

[3]

C. C. Kenry and B. Liu, “Enhancing the Performance of Pure Organic Room-Temperature Phosphorescent Luminophores,” Nature Communications 10 (2019): 2111.

[4]

S. Y. Yang, Y. K. Qu, L. S. Liao, Z. Q. Jiang, and S. T. Lee, “Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications,” Advanced Materials 34 (2022): e2104125.

[5]

X. Ma, J. Wang, and H. Tian, “Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence,” Accounts of Chemical Research 52 (2019): 738-748.

[6]

G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas, and C. L. Fraser, “Multi-Emissive Difluoroboron Dibenzoylmethane Polylactide Exhibiting Intense Fluorescence and Oxygen-Sensitive Room-Temperature Phosphorescence,” Journal of the American Chemical Society 129 (2007): 8942-8943.

[7]

Z. Wu, H. Choi, and Z. M. Hudson, “Achieving White-Light Emission Using Organic Persistent Room Temperature Phosphorescence,” Angewandte Chemie International Edition 135 (2023): e202301186.

[8]

Q. Dang, Y. Jiang, J. Wang, et al., “Room-Temperature Phosphorescence Resonance Energy Transfer for Construction of Near-Infrared Afterglow Imaging Agents,” Advanced Materials 32 (2020): 2006752.

[9]

J. Yang, M. Fang, and Z. Li, “Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application,” Accounts of Materials Research 2 (2021): 644-654.

[10]

X. Yang, G. I. N. Waterhouse, S. Lu, and J. Yu, “Recent Advances in the Design of Afterglow Materials: Mechanisms, Structural Regulation Strategies and Applications,” Chemical Society Reviews 52 (2023): 8005-8058.

[11]

Z. Wu, J. Nitsch, and T. B. Marder, “Persistent Room-Temperature Phosphorescence From Purely Organic Molecules and Multi-Component Systems,” Advanced Optical Materials 9 (2021): 2100411.

[12]

S. Hirata, “Recent Advances in Materials With Room-Temperature Phosphorescence: Photophysics for Triplet Exciton Stabilization,” Advanced Optical Materials 5 (2017): 1700116.

[13]

S. Hirata, “Molecular Physics of Persistent Room Temperature Phosphorescence and Long-Lived Triplet Excitons,” Applied Physics Reviews 9 (2022): 011304.

[14]

S. K. Lower and M. A. El-Sayed, “The Triplet State and Molecular Electronic Processes in Organic Molecules,” Chemical Reviews 66 (2002): 199-241.

[15]

J. Chen, X. Chen, L. Cao, H. Deng, Z. Chi, and B. Liu, “Synergistic Generation and Accumulation of Triplet Excitons for Efficient Ultralong Organic Phosphorescence,” Angewandte Chemie International Edition 61 (2022): e202200343.

[16]

Z. Yang, Z. Mao, X. Zhang, et al., “Intermolecular Electronic Coupling of Organic Units for Efficient Persistent Room-Temperature Phosphorescence,” Angewandte Chemie International Edition 55 (2016): 2181-2185.

[17]

S. Garain, S. Kuila, B. C. Garain, et al., “Arylene Diimide Phosphors: Aggregation Modulated Twin Room Temperature Phosphorescence from Pyromellitic Diimides,” Angewandte Chemie International Edition 60 (2021): 12323-12327.

[18]

Z. Yin, Q. Sun, L. Chen, et al., “New Phthalic Anhydride-Based Room-Temperature Phosphorescence Emitter With Lifetime Longer than One Second,” Advanced Optical Materials 11 (2022): 2202224.

[19]

Z. Zhou, X. Wang, and A. Lv, “Achieving Efficient X-Ray Scintillation of Purely Organic Phosphorescent Materials by Chromophore Confinement,” Advanced Materials 36 (2024): e2407916.

[20]

E. Hamzehpoor and D. F. Perepichka, “Crystal Engineering of Room Temperature Phosphorescence in Organic Solids,” Angewandte Chemie International Edition 59 (2020): 9977-9981.

[21]

Z. Wu, J. Nitsch, J. Schuster, et al., “Persistent Room Temperature Phosphorescence From Triarylboranes: A Combined Experimental and Theoretical Study,” Angewandte Chemie International Edition 59 (2020): 17137-17144.

[22]

Y. Xie, Y. Ge, Q. Peng, C. Li, Q. Li, and Z. Li, “How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations,” Advanced Materials 29 (2017): 1606829.

[23]

Z. Wang, X. Cheng, Y. Xie, et al., “Recent Advances in Organic Room-Temperature Phosphorescence of Heteroatom (B/S/P)-Containing Chromophores,” CCS Chemistry 5 (2023): 292-309.

[24]

W. Z. Yuan, X. Y. Shen, H. Zhao, et al., “Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature,” Journal of Physical Chemistry C 114 (2010): 6090-6099.

[25]

O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, and J. Kim, “Activating Efficient Phosphorescence From Purely Organic Materials by Crystal Design,” Nature Chemistry 3 (2011): 205-210.

[26]

Z. Yin, M. Gu, H. Ma, et al., “Molecular Engineering Through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence,” Angewandte Chemie International Edition 60 (2021): 2058-2063.

[27]

W. Ye, H. Ma, H. Shi, et al., “Confining Isolated Chromophores for Highly Efficient Blue Phosphorescence,” Nature Materials 20 (2021): 1539-1544.

[28]

J. Yang, X. Zhen, and B. Wang, “The Influence of the Molecular Packing on the Room Temperature Phosphorescence of Purely Organic Luminogens,” Nature Communications 9 (2018): 840.

[29]

M. Singh, K. Liu, S. Qu, et al., “Recent Advances of Cocrystals With Room Temperature Phosphorescence,” Advanced Optical Materials 9 (2021): 2002197.

[30]

S. Cai, X. Yao, H. Ma, H. Shi, and Z. An, “Manipulating Intermolecular Interactions for Ultralong Organic Phosphorescence” Aggregate 4 (2023): e320.

[31]

D. Li, F. Lu, J. Wang, et al., “Amorphous Metal-Free Room-Temperature Phosphorescent Small Molecules With Multicolor Photoluminescence via a Host-Guest and Dual-Emission Strategy,” Journal of the American Chemical Society 140 (2018): 1916-1923.

[32]

R. Kabe and C. Adachi, “Organic Long Persistent Luminescence,” Nature 550 (2017): 384-387.

[33]

J. Chen, X. Zhang, Z. Xie, and B. Liu, “Ultralong Thermally Activated Delayed Fluorescence Based on Intermolecular Charge Transfer Induced by Isomer in Carbazole Derivative,” Aggregate 5 (2024): e638.

[34]

D. Lee, O. Bolton, B. C. Kim, J. H. Youk, S. Takayama, and J. Kim, “Room Temperature Phosphorescence of Metal-Free Organic Materials in Amorphous Polymer Matrices,” Journal of the American Chemical Society 135 (2013): 6325-6329.

[35]

Y. Su, S. Z. F. Phua, Y. Li, et al., “Ultralong Room Temperature Phosphorescence From Amorphous Organic Materials Toward Confidential Information Encryption and Decryption,” Science Advances 5 (2018): eaas9732.

[36]

H. Wu, W. Chi, Z. Chen, et al., “Achieving Amorphous Ultralong Room Temperature Phosphorescence by Coassembling Planar Small Organic Molecules with Polyvinyl Alcohol,” Advanced Functional Materials 29 (2018): 1807243.

[37]

Y. Gong, J. Yang, M. Fang, and Z. Li, “Room-Temperature Phosphorescence From Metal-Free Polymer-Based Materials,” Cell Reports Physical Science 3 (2022): 100663.

[38]

Z. Li, K. Fu, H. Deng, et al., “Polymeric Ultralong Organic Phosphorescence with Excellent Humidity and Temperature Resistance via Hydrophobic Effect,” Aggregate 5 (2024): e440.

[39]

A. A. Kongasseri, S. Garain, S. N. Ansari, et al., “Unleashing Ambient Triplet Harvesting Pathways in Arylene Diimides via Modular, Noncovalent Charge Transfer Interactions,” Chemistry of Materials 35 (2023): 7781-7788.

[40]

X. Ma, J. Cao, Q. Wang, and H. Tian, “Photocontrolled Reversible Room Temperature Phosphorescence (RTP) Encoding β-Cyclodextrin Pseudorotaxane,” Chemical Communications 47 (2011): 3559.

[41]

H. Chen, X. Ma, S. Wu, and H. Tian, “A Rapidly Self-Healing Supramolecular Polymer Hydrogel With Photostimulated Room-Temperature Phosphorescence Responsiveness,” Angewandte Chemie International Edition 53 (2014): 14149-14152.

[42]

Z. Y. Zhang, Y. Chen, and Y. Liu, “Efficient Room-Temperature Phosphorescence of a Solid-State Supramolecule Enhanced by Cucurbit[6]Uril,” Angewandte Chemie International Edition 58 (2019): 6028-6032.

[43]

Z. Y. Zhang, W. W. Xu, W. S. Xu, J. Niu, X. H. Sun, and Y. Liu, “A Synergistic Enhancement Strategy for Realizing Ultralong and Efficient Room-Temperature Phosphorescence,” Angewandte Chemie International Edition 59 (2020): 18748-18754.

[44]

Z. Liu, W. Lin, and Y. Liu, “Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications,” Accounts of Chemical Research 55 (2022): 3417-3429.

[45]

G. Liu and Y. Zhao, “Switching Between Phosphorescence and Fluorescence Controlled by Chiral Self-Assembly,” Advanced Science 4 (2017): 1700021.

[46]

H. Zheng, Z. Zhang, S. Cai, Z. An, and W. Huang, “Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly,” Advanced Materials 36 (2024): e2311922.

[47]

C. S. Bilen, N. Harrison, and D. J. Morantz, “Unusual Room Temperature Afterglow in Some Crystalline Organic Compounds,” Nature 271 (1978): 235-237.

[48]

B. Chen, W. Huang, H. Su, H. Miao, X. Zhang, and G. Zhang, “An Unexpected Chromophore-Solvent Reaction Leads to Bicomponent Aggregation-Induced Phosphorescence,” Angewandte Chemie International Edition 59 (2020): 10023-10026.

[49]

C. Chen, Z. Chi, K. C. Chong, et al., “Carbazole Isomers Induce Ultralong Organic Phosphorescence,” Nature Materials 20 (2021): 175-180.

[50]

B. Ding, L. Ma, Z. Huang, X. Ma, and H. Tian, “Engendering Persistent Organic Room Temperature Phosphorescence by Trace Ingredient Incorporation,” Science Advances 7 (2021): eabf9668.

[51]

Z. Yin, Z. Wu, and B. Liu, “Recent Advances in Impurity-Induced Room-Temperature Phosphorescence,” Advanced Materials (2025): e2506549.

[52]

Z. Wu, C. Herok, A. Friedrich, B. Engels, T. B. Marder, and Z. M. Hudson, “Impurities in Arylboronic Esters Induce Persistent Afterglow,” Journal of the American Chemical Society 146 (2024): 31507-31517.

[53]

S. Guo, W. Dai, X. Chen, et al., “Recent Progress in Pure Organic Room Temperature Phosphorescence of Small Molecular Host-Guest Systems,” ACS Materials Letters 3 (2021): 379-397.

[54]

D. Liu, Y. Song, H. Wang, Z. Zhou, Z. Liu, and T. Wang, “A Review: Research Progress in Doped Organic Long-Persistent Luminescence Materials Based on Small Fused Ring/Heterocycle Molecules,” Journal of Molecular Structure 1313 (2024): 138745.

[55]

G. Baryshnikov, B. Minaev, and H. Agren, “Theory and Calculation of the Phosphorescence Phenomenon,” Chemical Reviews 117 (2017): 6500-6537.

[56]

Z. Shuai and Q. Peng, “Excited States Structure and Processes: Understanding Organic Light-Emitting Diodes at the Molecular Level,” Physics Reports 537 (2014): 123-156.

[57]

C. M. Marian, “Spin-Orbit Coupling and Intersystem Crossing in Molecules,” Wiley Interdisciplinary Reviews: Computational Molecular Science 2 (2011): 187-203.

[58]

H. Matsuoka, M. Retegan, L. Schmitt, S. Hoger, F. Neese, and O. Schiemann, “Time-Resolved Electron Paramagnetic Resonance and Theoretical Investigations of Metal-Free Room-Temperature Triplet Emitters,” Journal of the American Chemical Society 139 (2017): 12968-12975.

[59]

J. S. Wilson, N. Chawdhury, M. R. Al-Mandhary, et al., “The Energy Gap Law for Triplet States in Pt-Containing Conjugated Polymers and Monomers,” Journal of the American Chemical Society 123 (2001): 9412-9417.

[60]

M. Lax, “The Franck-Condon Principle and Its Application to Crystals,” Journal of Chemical Physics 20 (1952): 1752-1760.

[61]

M. R. Wright, R. P. Frosch, and G. W. Robinson, “Phosphorescence Lifetime of Benzene. An Intermolecular Heavy-Atom Effect, a Deuterium Effect, and a Temperature Effect,” Journal of Chemical Physics 33 (1960): 934-935.

[62]

W. Browne, “The Effect of Deuteriation on the Emission Lifetime of Inorganic Compounds,” Coordination Chemistry Reviews 219 (2001): 761-787.

[63]

S. Hirata, K. Totani, J. Zhang, et al., “Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials Under Ambient Conditions,” Advanced Functional Materials 23 (2013): 3386-3397.

[64]

S. Hirata, K. Totani, H. Kaji, M. Vacha, T. Watanabe, and C. Adachi, “Reversible Thermal Recording Media Using Time-Dependent Persistent Room Temperature Phosphorescence,” Advanced Optical Materials 1 (2013): 438-442.

[65]

R. Shimura, K. Hayashi, S. Ueda, R. Tsuru, and S. Hirata, “Oxygen Quantification Based on the Persistent Phosphorescence Lifetime of Host-Guest Nanocrystals,” ACS Materials Letters 7 (2025): 2049-2055.

[66]

R. K. Mulimani, S. Ueda, and R. Miyashita, “Selective Lower-Occupied Through-Bond Interactions for Efficient Organic Phosphorescence Enabling High-Resolution Long-Wavelength Afterglow,” Advanced Materials 37 (2025): e2502611.

[67]

B. Sk and S. Hirata, “Symmetry-Breaking Triplet Excited State Enhances Red Afterglow Enabling Ubiquitous Afterglow Readout,” Advancement of Science 11 (2024): e2308897.

[68]

S. Jung, W. L. Cheung, and S. J. Li, “Enhancing Operational Stability of OLEDs Based on Subatomic Modified Thermally Activated Delayed Fluorescence Compounds,” Nature Communications 14 (2023): 6481.

[69]

T. Huang, Q. Wang, H. Zhang, et al., “Enhancing the Efficiency and Stability of Blue Thermally Activated Delayed Fluorescence Emitters by Perdeuteration,” Nature Photonics 18 (2024): 516-523.

[70]

S. F. Wang, D. Y. Zhou, K. H. Kuo, et al., “Effects of Deuterium Isotopes on Pt(II) Complexes and Their Impact on Organic NIR Emitters,” Angewandte Chemie International Edition 63 (2024): e202317571.

[71]

L. Bian, H. Shi, X. Wang, et al., “Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly,” Journal of the American Chemical Society 140 (2018): 10734-10739.

[72]

L. Ma and X. Ma, “Recent Advances in Room-Temperature Phosphorescent Materials by Manipulating Intermolecular Interactions,” Science China Chemistry 66 (2022): 304-314.

[73]

N. Notsuka, R. Kabe, K. Goushi, and C. Adachi, “Confinement of Long-Lived Triplet Excitons in Organic Semiconducting Host-Guest Systems,” Advanced Functional Materials 27 (2017): 1703902.

[74]

Z. Xie, Y. Xue, X. Zhang, J. Chen, Z. Lin, and B. Liu, “Isostructural Doping for Organic Persistent Mechanoluminescence,” Nature Communications 15 (2024): 3668.

[75]

Y. Gong, G. Chen, Q. Peng, et al., “Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism From Pure Organic Luminogens,” Advanced Materials 27 (2015): 6195-6201.

[76]

Z. An, C. Zheng, and Y. Tao, “Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence,” Nature Materials 14 (2015): 685-690.

[77]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, “Highly Efficient Organic Light-Emitting Diodes From Delayed Fluorescence,” Nature 492 (2012): 234-238.

[78]

Z. Yang, Z. Mao, Z. Xie, et al., “Recent Advances in Organic Thermally Activated Delayed Fluorescence Materials,” Chemical Society Reviews 46 (2017): 915-1016.

[79]

X. Ai, E. W. Evans, and S. Dong, “Efficient Radical-Based Light-Emitting Diodes With Doublet Emission,” Nature 563 (2018): 536-540.

[80]

Q. Peng, A. Obolda, M. Zhang, and F. Li, “Organic Light-Emitting Diodes Using a Neutral π Radical as Emitter: The Emission From a Doublet,” Angewandte Chemie International Edition 54 (2015): 7091-7095.

[81]

Z. Zhou, C. Qiao, K. Wang, et al., “Experimentally Observed Reverse Intersystem Crossing-Boosted Lasing,” Angewandte Chemie International Edition 59 (2020): 21677-21682.

[82]

T. Zhang, Z. Zhou, X. Liu, et al., “Thermally Activated Lasing in Organic Microcrystals Toward Laser Displays,” Journal of the American Chemical Society 143 (2021): 20249-20255.

[83]

A. J. Gillett, C. Tonnele, and G. Londi, “Spontaneous Exciton Dissociation Enables Spin State Interconversion in Delayed Fluorescence Organic Semiconductors,” Nature Communications 12 (2021): 6640.

[84]

T. Zhang, Q. Peng, C. Quan, et al., “Using the Isotope Effect to Probe an Aggregation Induced Emission Mechanism: Theoretical Prediction and Experimental Validation,” Chemical Science 7 (2016): 5573-5580.

[85]

C. Wang, X. Song, W. Li, et al., “Deuterated Multiple-Resonance Thermally Activated Delayed Fluorescence Emitter and Their Application in Vacuum-Deposited Organic Light-Emitting Diodes,” Advanced Optical Materials 12 (2024): 2401391.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/