Temperature-Inert Terbium Cluster Scintillator

You-Song Hu , Ruo-Yu Fang , Yan-Hao Liu , Meng-Han Fu , Shu-Han Wang , Jia-Wang Yuan , Qi Yang , Qiu-Chen Peng , Zhao-Yang Wang , Xiu-Qin Li , Kai Li , Shuang-Quan Zang

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70140

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70140 DOI: 10.1002/agt2.70140
RESEARCH ARTICLE

Temperature-Inert Terbium Cluster Scintillator

Author information +
History +
PDF

Abstract

X-ray scintillators play a critical role in medical diagnostics and industrial applications by converting ionizing radiation into low-energy photons. Among various scintillators, metal clusters are promising due to advantages such as atom-precise structures, high heavy-atom density, strong luminescence intensity, and low usage cost. Those exhibiting temperature-inert radioluminescence properties show broad application potential in extreme environments and have attracted considerable attention. In this work, a comprehensive strategy incorporating triplet exciton recycling and fluoride-bridge-induced carrier traps was introduced in the design of a temperature-inert cluster scintillator (Tb16). The introduction of rare earth elements facilitated high-efficiency triplet exciton recycling during the radioluminescence process, endowing Tb16 with a high light yield of 41380 ± 950 photons MeV−1. Meanwhile, the presence of fluoride-bridges in Tb16 induced abundant carrier traps, and the charge carriers captured by these traps could be thermally released back to the excited state at high temperatures, effectively compensating for emission loss. As a result, the radioluminescence intensity of Tb16 remains nearly unchanged over a temperature range from 300 to 540 K, demonstrating its strong application potential in variable-temperature X-ray imaging.

Keywords

metal cluster / radioluminescence / temperature-inert / X-ray scintillator

Cite this article

Download citation ▾
You-Song Hu, Ruo-Yu Fang, Yan-Hao Liu, Meng-Han Fu, Shu-Han Wang, Jia-Wang Yuan, Qi Yang, Qiu-Chen Peng, Zhao-Yang Wang, Xiu-Qin Li, Kai Li, Shuang-Quan Zang. Temperature-Inert Terbium Cluster Scintillator. Aggregate, 2025, 6(10): e70140 DOI:10.1002/agt2.70140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Roques-Carmes, N. Rivera, A. Ghorashi, et al., “A Framework for Scintillation in Nanophotonics,” Science 375 (2022): eabm9293.

[2]

W. Wu, S. Lin, J.-X. Wang, et al., “Enhanced X-ray Luminescence in One-Dimensional Cu-I Coordination Polymers via Ligand Halogen Engineering,” Chem 11 (2025): 102401.

[3]

S.-Y. Yang, L. Zhang, F.-C. Kong, et al., “Scintillators With Aggregation-induced Emission,” Chem 11 (2025): 102534.

[4]

X. Wang, W. Sun, H. Shi, et al., “Organic Phosphorescent Nanoscintillator for Low-dose X-ray-Induced Photodynamic Therapy,” Nature Communications 13 (2022): 5091.

[5]

Z. Hong, Z. Chen, Q. Chen, and H. Yang, “Advancing X-ray Luminescence for Imaging, Biosensing, and Theragnostics,” Accounts of Chemical Research 56 (2023): 37-51.

[6]

H. Zhang, Z. Yang, M. Zhou, et al., “Reproducible X-ray Imaging With a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure,” Advanced Materials 33 (2021): 2102529.

[7]

J.-X. Wang, T. He, O. Shekhah, et al., “In Situ Electrochemical Deposition of Compact Metal-Organic Framework Thin Films for High-Resolution X-ray Imaging,” Matter 8 (2025): 101936.

[8]

Y.-N. Zhao, Q. Yang, B.-H. Yao, et al., “Afterglow Copper(I) Iodine Cluster Scintillator,” Angewandte Chemie International Edition 64 (2025): e202500481.

[9]

J.-W. Yuan, Q.-C. Peng, R.-Y. Cao, et al., “Short Lifetime Radical Metal Cluster Scintillator,” Angewandte Chemie International Edition 64 (2025): e202503457.

[10]

H. Xiang, Y. Wang, X. Xu, et al., “Reversible Interconversion Between Ag2 and Ag6 Clusters and Their Responsive Optical Properties,” Journal of the American Chemical Society 146 (2024): 28572-28579.

[11]

W.-F. Wang, M.-J. Xie, P.-K. Wang, et al., “Thermally Activated Delayed Fluorescence (TADF)-Active Coinage-Metal Sulfide Clusters for High-Resolution X-ray Imaging,” Angewandte Chemie International Edition 63 (2024): e202318026.

[12]

C. Dong, X. Song, B. E. Hasanov, et al., “Organic-inorganic Hybrid Glasses of Atomically Precise Nanoclusters,” Journal of the American Chemical Society 146 (2024): 7373-7385.

[13]

N. Zhang, L. Qu, S. Dai, et al., “Intramolecular Charge Transfer Enables Highly-Efficient X-ray Luminescence in Cluster Scintillators,” Nature Communications 14 (2023): 2901.

[14]

Q.-C. Peng, Y.-B. Si, J.-W. Yuan, et al., “High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator,” Angewandte Chemie International Edition 62 (2023): e202308194.

[15]

Y. Wang, T. Zhang, W. Zhao, et al., “Machine Learning-Guided Discovery of Copper(I)-Iodide Cluster Scintillators for Efficient X-ray Luminescence Imaging,” Angewandte Chemie International Edition 64 (2025): e202413672.

[16]

P. Yuan, H. Zhang, Y. Zhou, et al., “Thermally Activated Delayed Fluorescence Au-Ag-oxo Nanoclusters: From Photoluminescence to Radioluminescence,” Aggregate 5 (2024): e475.

[17]

Q.-C. Peng, Y.-B. Si, Z.-Y. Wang, et al., “Thermally Activated Delayed Fluorescence Coinage Metal Cluster Scintillator,” ACS Central Science 9 (2023): 1419-1426.

[18]

Q. Hu, C. Zhang, X. Wu, et al., “Highly Effective Hybrid Copper(I) Iodide Cluster Emitter With Negative Thermal Quenched Phosphorescence for X-ray Imaging,” Angewandte Chemie International Edition 62 (2023): e202217784.

[19]

J.-C. G. Bünzli, “Lanthanide Luminescence for Biomedical Analyses and Imaging,” Chemical Reviews 110 (2010): 2729-2755.

[20]

J. Wei, X. Zhang, X. Wang, Y. Liu, and Y. Zhang, “New Transparent Rare-Earth-Based Hybrid Glasses: Synthesis, Luminescence, and X-Ray Imaging Application,” Aggregate 6 (2025): e70021.

[21]

X. Liu, R. Li, X. Xu, et al., “Lanthanide(III)-Cu4I4 Organic Framework Scintillators Sensitized by Cluster-Based Antenna for High-resolution X-ray Imaging,” Advanced Materials 35 (2023): 2206741.

[22]

B.-K. Ling, J. Li, Y.-Q. Zhai, et al., “Terbium-Fluorido Cluster: An Energy Cage for Photoluminescence,” Chemical Communications 56 (2020): 9130-9133.

[23]

J.-Y. He, Y. Wang, X. Chen, W.-P. Chen, G. Zhou, and Y.-Z. Zheng, “Air and Thermally Stable Fluoride Bridged Rare-Earth Clusters Showing Intense Photoluminescence and Potential LED Application,” Advanced Materials 36 (2024): 2406882.

[24]

R.-W. Huang, X. Song, S. Chen, et al., “Radioluminescent Cu-Au Metal Nanoclusters: Synthesis and Self-Assembly for Efficient X-ray Scintillation and Imaging,” Journal of the American Chemical Society 145 (2023): 13816-13827.

[25]

W. Ma, Y. Su, Q. Zhang, et al., “Thermally Activated Delayed Fluorescence (TADF) Organic Molecules for Efficient X-ray Scintillation and Imaging,” Nature Materials 21 (2022): 210-216.

[26]

S. Yuan, G. Zhang, F. Chen, et al., “Thermally Activated Delayed Fluorescent Ag(I) Complexes for Highly Efficient Scintillation and High-Resolution X-ray Imaging,” Advanced Functional Materials 34 (2024): 2400436.

[27]

L.-J. Xu, X. Lin, Q. He, M. Worku, and B. Ma, “Highly Efficient Eco-Friendly X-ray Scintillators Based on an Organic Manganese Halide,” Nature Communications 11 (2020): 4329.

[28]

C. Lin, Z. Wu, H. Ma, et al., “Charge Trapping for Controllable Persistent Luminescence in Organics,” Nature Photonics 18 (2024): 350-356.

[29]

Q. Wu, X. Xu, X. Li, et al., “Probing Energy-Funneling Kinetics in Nanocrystal Sublattices for Superior X-ray Imaging,” Angewandte Chemie International Edition 63 (2024): e202404177.

[30]

Z. Yang, P. Zhang, X. Chen, et al., “High-Confidentiality X-ray Imaging Encryption Using Prolonged Imperceptible Radioluminescence Memory Scintillators,” Advanced Materials 35 (2023): 2309413.

[31]

X. Ou, X. Qin, B. Huang, et al., “High-Resolution X-ray Luminescence Extension Imaging,” Nature 590 (2021): 410-415.

[32]

A. S. Altowyan, M. Sonsuz, Ü. H. Kaynar, et al., “Thermoluminescence Kinetic Parameters of Beta Irradiated the Zinc Gallate Phosphor Using Different Methods,” Ceramics International 49 (2023): 23732-23742.

[33]

A. C. Coleman and E. G. Yukihara, “On the Validity and Accuracy of the Initial Rise Method Investigated Using Realistically Simulated Thermoluminescence Curves,” Radiation Measurements 117 (2018): 70-79.

[34]

R.-Y. Cao, Y.-B. Si, Q. Yang, et al., “Thermally Activated Delayed Phosphorescence Triggered by Charge Separation state Carrier Storage in an Organic Scintillator,” National Science Review 12 (2025): nwaf045.

[35]

T. Wang, S. Hu, T. Ji, et al., “High-temperature X-ray Imaging With Transparent Ceramics Scintillators,” Laser & Photonics Reviews 18 (2024): 2300892.

[36]

Y. Liu, S. Yan, T. Wang, et al., “Achieving Color-Tunable Long Persistent Luminescence in Cs2CdCl4 Ruddlesden-Popper Phase Perovskites,” Angewandte Chemie International Edition 62 (2023): e202308420.

[37]

Y. Zhang, T. Du, H. Duan, et al., “Efficient and Robust Europium(III)-Based Hybrid Lanthanide Scintillators for Advanced X-ray Imaging,” Angewandte Chemie International Edition 64 (2025): e202423155.

[38]

X. Du, S. Zhao, L. Wang, et al., “Efficient and Ultrafast Organic Scintillators by Hot Exciton Manipulation,” Nature Photonics 18 (2024): 162-169.

[39]

J.-X. Wang, L. Gutiérrez-Arzaluz, X. Wang, et al., “Heavy-atom Engineering of Thermally Activated Delayed Fluorophores for High-Performance X-ray Imaging Scintillators,” Nature Photonics 16 (2022): 869-875.

[40]

Y. Wang, J. Yu, Z. Zhou, et al., “Organic Ionic Host-Guest Phosphor With Dual-Confined Nonradiation for Constructing Ultrahigh-Temperature X-ray Scintillator,” Journal of the American Chemical Society 147 (2025): 11098-11107.

[41]

H. Li, Q. Dong, Y. Li, et al., “Thermal-Adaptive Photonic MOFs for High-Performance X-ray Scintillator,” Advanced Functional Materials 35 (2025): 2500445.

[42]

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodríguez-Ubis, and J. Kankare, “Correlation Between the Lowest Triplet State Energy Level of the Ligand and Lanthanide(III) Luminescence Quantum Yield,” Journal of Luminescence 75 (1997): 149-169.

[43]

J. Xu, R. Luo, Z. Luo, et al., “Ultrabright Molecular Scintillators Enabled by Lanthanide-Assisted Near-Unity Triplet Exciton Recycling,” Nature Photonics 19 (2025): 71-78.

[44]

H. Wu, Q. Wang, A. Zhang, et al., “One-dimensional Scintillator Film With Benign Grain Boundaries for High-Resolution and Fast X-ray Imaging,” Science Advances 9 (2023): eadh1789.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/