Engineered Integration of Diverse Functional Units Induces Multifunctionality in Malonate-Borate Hybrids

Ziqi Chen , Chenxu Li , Xiaoyu Wu , Juanjuan Lu , Zhihua Yang , Xueling Hou , Miriding Mutailipu

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70134

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70134 DOI: 10.1002/agt2.70134
RESEARCH ARTICLE

Engineered Integration of Diverse Functional Units Induces Multifunctionality in Malonate-Borate Hybrids

Author information +
History +
PDF

Abstract

Borate-based hybrids offer an excellent platform for advanced materials design, yet integrating multiple functional units remains challenged by competing structural requirements. Here, we presented a rationally designed hybrid system that first achieves synergistic coupling between π-conjugated malonate and polymerized boro-oxygen units through precise coordination chemistry control. We synthesized eight new malonate-borate hybrids comprising two structural types: series I ([B3O7(OH)]-based) and series II ([H3BO3]-based). Starting from three centrosymmetric series I compounds, controlled variation of stoichiometry and reaction pathways yielded four non-centrosymmetric series II hybrids and one centrosymmetric series II phase, enabling tailored structural symmetry. The series II system exhibits diverse functional properties across the material series, including a high birefringence (Δn = 0.203@546 nm) with a short cutoff edge of 200 nm, strong second-harmonic generation responses rivaling KH2PO4 (KDP), and high ionic conductivity. This work establishes a new paradigm for functional crystal engineering by elucidating fundamental design principles for balancing competing property requirements through controlled structural evolution.

Keywords

birefringence / borates / ionic conductors / SHG / UV multifunctional optoelectronic crystals

Cite this article

Download citation ▾
Ziqi Chen, Chenxu Li, Xiaoyu Wu, Juanjuan Lu, Zhihua Yang, Xueling Hou, Miriding Mutailipu. Engineered Integration of Diverse Functional Units Induces Multifunctionality in Malonate-Borate Hybrids. Aggregate, 2025, 6(10): e70134 DOI:10.1002/agt2.70134

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Darses and J. P. Jenet, “Potassium Organotrifluoroborates:  New Perspectives in Organic Synthesis,” Chemical Reviews 108 (2008): 288-325.

[2]

H. T. Qiu, F. M. Li, C. C. Jin, et al., “Fluorination Strategy Towards Symmetry Breaking of Boron-Centered Tetrahedron for Poly-Fluorinated Optical Crystals,” Angewandte Chemie International Edition 63 (2024): e202316194.

[3]

G. D. D. Sanglay, J. S. Garcia, M. S. Palaganas, et al., “Borate-Based Compounds as Mixed Polyanion Cathode Materials for Advanced Batteries,” Molecules 27 (2022): 8047.

[4]

G. M. L. Cragg and K. R. Koch, “Organoborates in Organic Synthesis: The Use of Alkenyl-, Alkynyl-, and Cyano-Borates as Synthetic Intermediates,” Chemical Society Reviews 6 (1977): 393-412.

[5]

M. Mutailipu, K. R. Poeppelmeier, and S. L. Pan, “Borates: A Rich Source for Optical Materials,” Chemical Reviews 121 (2021): 1130-1202.

[6]

M. S. Wang, G. C. Guo, W. T. Chen, et al., “A White-Light-Emitting Borate-Based Inorganic-Organic Hybrid Open Framework,” Angewandte Chemie International Edition 46 (2007): 3909-3911.

[7]

Z. Y. Xue, X. Wen, Y. C. Yan, et al., “Lithium Borate-Squarate: An Organic-Inorganic Groups-Mixed Nonlinear Optical Crystal With Large Birefringence,” Inorganic Chemistry 64 (2025): 3637-3642.

[8]

J. F. V. Humbeck, M. L. Aubrey, A. Alsbaiee, et al., “Tetraarylborate Polymer Networks as Single-Ion Conducting Solid Electrolytes,” Chemical Science 6 (2015): 5499-5505.

[9]

Y. L. Deng, C. L. Hu, and J. G. Mao, “[C3H7N6]3[B3O5(OH)2] and [C3H8N6]4[B12O19(OH)6]: Two Melamine Borates With Large Birefringence,” Inorganic Chemistry 63 (2024): 22973-22981.

[10]

D. Asgari, J. Grüneberg, Y. Luo, et al., “An Anionic Two Dimensional Covalent Organic Framework From Tetratopic Borate Centres Pillared by Lithium Ions,” Nature Communications 15 (2025): 7031.

[11]

J. B. Chen, Y. H. Yu, H. X. Zhang, and J. Zhang, “Cu(I)-Induced ‘Click Reaction’ Involving Coordination and Covalent Assembly of Hybrid Borates for the Electrocatalytic CO2 Reduction,” Angewandte Chemie International Edition 63 (2024): e202412073.

[12]

C. H. Ge, L. X. Wang, L. L. Xue, et al., “Synthesis of Novel Organic-Ligand-Doped Sodium Bis(oxalate)-Borate Complexes With Tailored Thermal Stability and Enhanced Ion Conductivity for Sodium Ion Batteries,” Journal of Power Sources 15 (2014): 77-82.

[13]

J. J. Li, M. B. Xu, M. C. Wang, et al., “Breaking the Birefringence Barrier in B-O Crystals via B-C π-scaffolding,” Journal of the American Chemical Society (2025), https://doi.org/10.1021/jacs.5c06328.

[14]

M. Mutailipu, J. J. Li, and S. L. Pan, “Looking Back the Nonlinear Optical Crystals in a Functionalized Unit's Perspective,” Advanced Functional Materials 35 (2025): 2419204.

[15]

J. Lu, Y. K. Lian, L. Xiong, et al., “How to Maximize Birefringence and Nonlinearity of π-Conjugated Cyanurates,” Journal of the American Chemical Society 141 (2019): 16151-16159.

[16]

Y. Li and K. M. Ok, “Crystal Clear: Unveiling Giant Birefringence in Organic-Inorganic Cocrystals,” Chemical Science 15 (2024): 10193-10199.

[17]

Q. Q. Chen, C. L. Hu, J. Chen, Y. L. Li, B. X. Li, and J. G. Mao, “[o-C5H4NHOH]2[I7O18(OH)]⋅3H2O: An Organic-Inorganic Hybrid SHG Material Featuring an [I7O18(OH)]2− Branched Polyiodate Chain,” Angewandte Chemie International Edition 60 (2021): 17426-17429.

[18]

Y. Q. Li, X. Zhang, J. Y. Zheng, et al., “A Hydrogen Bonded Supramolecular Framework Birefringent Crystal,” Angewandte Chemie International Edition 62 (2023): e202304498.

[19]

C. C. Jin, F. M. Li, Z. H. Yang, S. L. Pan, and M. Mutailipu, “[C3N6H7]2[B3O3F4(OH)]: A New Hybrid Birefringent Crystal With Strong Optical Anisotropy Induced by Mixed Functional Units,” Journal of Materials Chemistry C 10 (2022): 6590-6595.

[20]

M. Cheng, C. C. Jin, W. Q. Jin, and X. L. Hou, “Target-Oriented Synthesis of Borate Derivatives Featuring Isolated [B3O3] Six-Membered Rings as Structural Features,” Inorganic Chemistry 62 (2023): 9209-9216.

[21]

R. J. Chen, W. J. Qu, X. Guo, L. Li, and F. Wu, “The Pursuit of Solid-State Electrolytes for Lithium Batteries: From Comprehensive Insight to Emerging Horizons,” Materials Horizons 3 (2016): 487-516.

[22]

G. Cakmak, J. Nuss, and M. Jansen, “LiB6O9F, the First Lithium Fluorooxoborate—Crystal Structure and Ionic Conductivity,” Zeitschrift Fur Anorganische Und Allgemeine Chemie 635 (2009): 631-636.

[23]

D. M. Shin, J. E. Bachman, M. K. Taylor, et al., “A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries,” Advanced Materials 32 (2020): 1905771.

[24]

L. Qi, X. X. Jiang, K. N. Duanmu, et al., “Record Second-Harmonic Generation and Birefringence in an Ultraviolet Antimonate by Bond Engineering,” Journal of the American Chemical Society 146 (2024): 9975-9983.

[25]

D. P. Yan, W. Jones, G. L. Fan, M. Wei, and D. G. Evans, “Organic Microbelt Array Based on Hydrogen-Bond Architecture Showing Polarized Fluorescence and Two-Photon Emission,” Journal of Materials Chemistry C 1 (2013): 4138-4145.

[26]

J. X. Wang, S. F. Li, M. M. Ren, et al., “[C(NH2)3][B(C2O2H4)2]: An Organic-Inorganic Hybrid Borate Containing Nonlinear-Optical Active Unit [B(C2O2H4)2] With Solar-Blind-Region Optical Nonlinearity,” Inorganic Chemistry 63 (2024): 4487-4491.

[27]

Y. Liu, P. F. Zhu, Q. S. Fan, et al., “Unusual Thermo-Enhanced Second Harmonic Generation in Organic Configurationally-Locked Polyene Crystals,” Advanced Science 12 (2025): 2412218.

[28]

D. P. Yan, H. J. Yang, Q. Y. Meng, H. Y. Lin, and M. Wei, “Two-Component Molecular Materials of 2,5-Diphenyloxazole Exhibiting Tunable Ultraviolet/Blue Polarized Emission, Pump-Enhanced Luminescence, and Mechanochromic Response,” Advanced Functional Materials 24 (2014): 587-594.

[29]

Y. J. Ma, X. Y. Fang, G. W. Xiao, B. Lu, and D. P. Yan, “Triple-Mode Tunable Long-Persistent Luminescence in a 3D Zinc-Organic Hybrid,” Chemical Communications 57 (2021): 6684-6687.

[30]

Z. X. Lu, C. Zhang, Q. L. Liang, X. M. Mei, C. H. Duan, and J. X. Wang, “An Inorganic-Organic Hybrid KBBF-Type Zinc Borate Imidazole Complex: A Promising Nonlinear-Optical Crystal,” Journal of Molecular Structure 1335 (2025): 141936.

[31]

P. Becker, “A Contribution to Borate Crystal Chemistry: Rules for the Occurrence of Polyborate Anion Types,” Zeitschrift Fur Kristallographie 216 (2001): 523-533.

[32]

B. Zhang, M. Y. Ran, X. T. Wu, H. Lin, and Q. L. Zhu, “Recent Advances and Future Perspectives on Rare-Earth-Based Nonlinear Optical Materials With π-Conjugated [XO3] (X = B, C, N) Units,” Coordination Chemistry Reviews 517 (2024): 216053.

[33]

H. T. Tian, C. S. Lin, B. X. Li, et al., “Designing Strong Polarity and High Configurational Entropy Flexible Units Toward Excellent Ultraviolet Nonlinear Optical Materials,” Advanced Functional Materials 34 (2024): 2402295.

[34]

R. L. Tang, D. X. Yang, L. Ma, Y. L. Lv, W. L. Liu, and S. P. Guo, “(C6H5N2)HgCl3: Discovery of a Polar Hg-Based Hybrid Halide as Preeminent Nonlinear Optical and Birefringent Material Activated by π-Conjugated Organic Cation Substitution,” Advanced Optical Materials 13 (2025): 2403044.

[35]

I. I. Zviedre and S. V. Belyakov, “Synthesis and Crystal Structure of Potassium Bis(malonato)Borate,” Russian Journal of Inorganic Chemistry 52 (2007): 686-690.

[36]

R. Selvi, G. Gokila, G. Vinitha, and R. S. Sundararajan, “Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Sodium Bis­(Malonato)Borate Monohydrate,” Acta Crystallographica Section E-crystallographic Communications 80 (2024): 180-183.

[37]

C. Liao, K. S. Han, L. Baggetto, et al., “Synthesis and Characterization of Lithium Bis(fluoromalonato)Borate for Lithium-Ion Battery Applications,” Advanced Energy Materials 4 (2014): 1301368.

[38]

L. L. Wu, C. S. Lin, H. T. Tian, et al., “Engineering an Excellent β-BaB2O4-Inspired UV Nonlinear Optical Material Through Secondary Building Unit Substitution,” Angewandte Chemie International Edition 64 (2025): e202500877.

[39]

L. L. Wu, C. S. Lin, H. T. Tian, et al., “Mg(C3O4H2)(H2O)2: A New Ultraviolet Nonlinear Optical Material Derived From KBe2BO3F2 With High Performance and Excellent Water-Resistance,” Angewandte Chemie International Edition 63 (2024): e202315647.

[40]

S. U. Sheleg and V. G. Gurtovoy, “Electrical Conductivity and Dielectric Properties of β-BaB2O4 Crystal in the Temperature Range 90-300 K,” Physics of the Solid State 46 (2004): 462-465.

[41]

Z. Q. Chen, C. Y. Liu, Z. Li, et al., “Breaking the Natural Tendency of Deep-UV Polyborate Anion Clusters to Inducing Strong Optical Anisotropy,” Small 21 (2025): 2504138.

[42]

B. H. Lei, Z. H. Yang, and S. L. Pan, “Enhancing Optical Anisotropy of Crystals by Optimizing Bonding Electron Distribution in Anionic Groups,” Chemical Communications 53 (2017): 2818-2821.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/