PDF
Abstract
Tau protein aggregation is a hallmark of a diverse group of neurodegenerative disorders known as tauopathies, including Alzheimer's disease, Pick's disease, and progressive supranuclear palsy. These disorders are characterized by the misfolding of tau into β-sheet-rich fibrils, disrupting neuronal function and contributing to disease progression. This review presents a comprehensive overview of the advances in molecular imaging that have deepened our understanding of tau pathology. We begin by examining tau's domain architecture, isoform diversity, and aggregation mechanisms, highlighting the central role of the microtubule-binding region in fibril formation. The review then explores the structural polymorphism of tau fibrils across tauopathies, emphasizing the significance of cryo-electron microscopy in resolving disease-specific conformers. We discuss the fluorescence and radioimaging as powerful tools for detecting tau aggregates at the nanoscale. Particular focus is given to the development of tau-selective fluorescent probes and positron emission tomography tracers, detailing their design strategies, binding mechanisms, and diagnostic potential. Emerging approaches such as super-resolution imaging and sensor arrays are also considered for their ability to enhance sensitivity and specificity. By integrating insights from structural biology, chemical imaging, and molecular neuroscience, this review provides a multiscale framework for understanding tau aggregation and its implications for diagnosis and therapeutic intervention.
Keywords
amyloid
/
fluorescence
/
imaging
/
positron emission tomography (PET)
/
probes
/
tau
Cite this article
Download citation ▾
Kaustubh R. Bhuskute, Jiayi Fan, Amandeep Kaur.
Illuminating Tau Aggregates: Multiscale Approaches for Detection, Imaging, and Understanding.
Aggregate, 2025, 6(10): e70133 DOI:10.1002/agt2.70133
| [1] |
P. Tabeshmehr and E. Eftekharpour, “Tau; One Protein, So Many Diseases,” Biology 12 (2023): 244.
|
| [2] |
K. Iqbal, F. Liu, and C.-X. Gong, “Tau and Neurodegenerative Disease: The Story so Far,” Nature Reviews Neurology 12 (2016): 15-27.
|
| [3] |
C. Parra Bravo, S. A. Naguib, and L. Gan, “Cellular and Pathological Functions of Tau,” Nature Reviews Molecular Cell Biology 25 (2024): 845-864.
|
| [4] |
M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, “A Protein Factor Essential for Microtubule Assembly,” Proceedings of the National Academy of Sciences 72 (1975): 1858-1862.
|
| [5] |
C. Li and J. Götz, “Tau-Based Therapies in Neurodegeneration: Opportunities and Challenges,” Nature Reviews Drug Discovery 16 (2017): 863-883.
|
| [6] |
T. Arendt, J. T. Stieler, and M. Holzer, “Tau and Tauopathies,” Brain Research Bulletin 126 (2016): 238-292.
|
| [7] |
N. McArthur, B. Kang, F. G. Rivera Moctezuma, et al., “Development of a Pan-Tau Multivalent Nanobody That Binds tau Aggregation Motifs and Recognizes Pathological Tau Aggregates,” Biotechnology Progress 40 (2024): e3463.
|
| [8] |
S. Buchholz and H. Zempel, “The Six Brain-Specific TAU Isoforms and Their Role in Alzheimer's Disease and Related Neurodegenerative Dementia Syndromes,” Alzheimer's Disease 20 (2024): 3606-3628.
|
| [9] |
M. Goedert, M. G. Spillantini, R. Jakes, D. Rutherford, and R. A. Crowther, “Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer's Disease,” Neuron 3 (1989): 519-526.
|
| [10] |
N. Zilka, P. Filipcik, P. Koson, et al., “Truncated Tau From Sporadic Alzheimer's Disease Suffices to Drive Neurofibrillary Degeneration In Vivo,” FEBS Letters 580 (2006): 3582-3588.
|
| [11] |
A. C. del Alonso, I. Grundke-Iqbal, H. S. Barra, and K. Iqbal, “Abnormal Phosphorylation of tau and the Mechanism of Alzheimer Neurofibrillary Degeneration: Sequestration of Microtubule-Associated Proteins 1 and 2 and the Disassembly of Microtubules by the Abnormal Tau,” Proceedings of the National Academy of Sciences 94 (1997): 298-303.
|
| [12] |
L. Buée, T. Bussière, V. Buée-Scherrer, A. Delacourte, and P. R. Hof, “Tau Protein Isoforms, Phosphorylation and Role in Neurodegenerative Disorders,” Brain Research Reviews 33 (2000): 95-130.
|
| [13] |
A. Abraha, N. Ghoshal, T. C. Gamblin, et al., “C-Terminal Inhibition of Tau Assembly In Vitro and in Alzheimer's Disease,” Journal of Cell Science 113 (2000): 3737-3745.
|
| [14] |
P. Flores-Rodríguez, M. A. Ontiveros-Torres, M. C. Cárdenas-Aguayo, “The Relationship Between Truncation and Phosphorylation at the C-Terminus of Tau Protein in the Paired Helical Filaments of Alzheimer's Disease,” et al. Frontiers in Neuroscience 9 (2015): 33.
|
| [15] |
M. Milanesi, Z. F. Brotzakis, and M. Vendruscolo, “Transient Interactions Between the Fuzzy Coat and the Cross-β Core of Brain-Derived Aβ42 Filaments,” Science Advances 11 (2025): eadr7008.
|
| [16] |
S. Wegmann, I. D. Medalsy, E. Mandelkow, and D. J. Müller, “The Fuzzy Coat of Pathological Human Tau Fibrils is a Two-Layered Polyelectrolyte Brush,” Proceedings of the National Academy of Sciences 110 (2013): E313-E321.
|
| [17] |
A. Kasen, S. Lövestam, L. Breton, et al., “Seed Structure and Phosphorylation in the Fuzzy Coat Impact Tau Seeding Competency,” BioRxiv (2025): 642026.
|
| [18] |
J. E. Gerson, U. Sengupta, C. A. Lasagna-Reeves, M. J. Guerrero-Muñoz, J. Troncoso, and R. Kayed, “Characterization of Tau Oligomeric Seeds in Progressive Supranuclear Palsy,” Acta Neuropathologica Communications 2 (2014): 73.
|
| [19] |
S. Maeda, N. Sahara, Y. Saito, et al., “Granular Tau Oligomers as Intermediates of Tau Filaments,” Biochemistry 46 (2007): 3856-3861.
|
| [20] |
K. R. Patterson, C. Remmers, Y. Fu, et al., “Characterization of Prefibrillar Tau Oligomers In Vitro and in Alzheimer Disease,” Journal of Biological Chemistry 286 (2011): 23063-23076.
|
| [21] |
K. Iqbal, T. Zaidi, G. Wen, et al., “Defective Brain Microtubule Assembly in Alzheimer's Disease,” Lancet 328 (1986): 421-426.
|
| [22] |
I. Grundke-Iqbal, K. Iqbal, M. Quinlan, Y. C. Tung, M. S. Zaidi, and H. M. Wisniewski, “Microtubule-Associated Protein Tau. A Component of Alzheimer Paired Helical Filaments,” Journal of Biological Chemistry 261 (1986): 6084-6089.
|
| [23] |
M. von Bergen, P. Friedhoff, J. Biernat, J. Heberle, E.-M. Mandelkow, and E. Mandelkow, “Assembly of τ Protein Into Alzheimer Paired Helical Filaments Depends on a Local Sequence Motif (306 VQIVYK 311) Forming β Structure,” Proceedings of the National Academy of Sciences 97 (2000): 5129-5134.
|
| [24] |
K. Iqbal, T. Zaidi, C. Bancher, and I. Grundke-Iqbal, “Alzheimer Paired Helical Filaments Restoration of the Biological Activity by Dephosphorylation,” FEBS Letters 349 (1994): 104-108.
|
| [25] |
I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder, “Abnormal Phosphorylation of the Microtubule-Associated Protein Tau (Tau) in Alzheimer Cytoskeletal Pathology,” Proceedings of the National Academy of Sciences 83 (1986): 4913-4917.
|
| [26] |
T. J. Cohen, J. L. Guo, D. E. Hurtado, et al., “The Acetylation of Tau Inhibits Its Function and Promotes Pathological tau Aggregation,” Nature Communications 2 (2011): 252.
|
| [27] |
S.-W. Min, S.-H. Cho, Y. Zhou, et al., “Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy,” Neuron 67 (2010): 953-966.
|
| [28] |
T. C. Gamblin, F. Chen, A. Zambrano, et al., “Caspase Cleavage of Tau: Linking Amyloid and Neurofibrillary Tangles in Alzheimer's Disease,” Proceedings of the National Academy of Sciences 100 (2003): 10032-10037.
|
| [29] |
S. Wegmann, B. Eftekharzadeh, K. Tepper, et al., “Tau Protein Liquid-Liquid Phase Separation can Initiate Tau Aggregation,” EMBO Journal 37 (2018): e98049.
|
| [30] |
L. S. Abasi, N. Elathram, M. Movva, A. Deep, K. D. Corbett, and G. T. Debelouchina, “Phosphorylation Regulates Tau's Phase Separation Behavior and Interactions With Chromatin,” Communications Biology 7 (2024): 251.
|
| [31] |
S. Wegmann, Tau Biology eds. A. Takashima, B. Wolozin, and L. Buee (Springer, 2019).
|
| [32] |
S. Rekhi, C. G. Garcia, M. Barai, et al., “Expanding the Molecular Language of Protein Liquid-Liquid Phase Separation,” Nature Chemistry 16 (2024): 1113-1124.
|
| [33] |
S. Ambadipudi, J. Biernat, D. Riedel, E. Mandelkow, and M. Zweckstetter, “Liquid-Liquid Phase Separation of the Microtubule-Binding Repeats of the Alzheimer-Related Protein Tau,” Nature Communications 8 (2017): 275.
|
| [34] |
S. Bachmann, M. Bell, J. Klimek, and H. Zempel, “Differential Effects of the Six Human TAU Isoforms: Somatic Retention of 2N-TAU and Increased Microtubule Number Induced by 4R-TAU,”Frontiers in Neuroscience 15 (2021): 643115.
|
| [35] |
D. Panda, J. C. Samuel, M. Massie, S. C. Feinstein, and L. Wilson, “Differential Regulation of Microtubule Dynamics by Three and Four-Repeat Tau: Implications for the Onset of Neurodegenerative Disease,” Proceedings of the National Academy of Sciences 100 (2003): 9548-9553.
|
| [36] |
M. Goedert and R. Jakes, “Expression of Separate Isoforms of Human Tau Protein: Correlation With the Tau Pattern in Brain and Effects on Tubulin Polymerization,” EMBO Journal 9 (1990): 4225-4230.
|
| [37] |
M. Espinoza, R. de Silva, D. W. Dickson, and P. Davies, “Differential Incorporation of Tau Isoforms in Alzheimer's Disease,” Journal of Alzheimer's Disease 14 (2008): 1-16.
|
| [38] |
E. Majounie, W. Cross, V. Newsway, et al., “Variation in Tau Isoform Expression in Different Brain Regions and Disease States,” Neurobiology of Aging 34 (2013): 1922.e7-1922.e12.
|
| [39] |
B. Falcon, W. Zhang, A. G. Murzin, et al., “Structures of Filaments From Pick's Disease Reveal a Novel tau Protein Fold,” Nature 561 (2018): 137-140.
|
| [40] |
H. N. Dawson, V. Cantillana, L. Chen, and M. P. Vitek, “The Tau N279K Exon 10 Splicing Mutation Recapitulates Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17 Tauopathy in a Mouse Model,” Journal of Neuroscience 27 (2007): 9155-9168.
|
| [41] |
S. Wegmann, Y. J. Jung, S. Chinnathambi, E.-M. Mandelkow, E. Mandelkow, and D. J. Muller, “Human Tau Isoforms Assemble Into Ribbon-Like Fibrils That Display Polymorphic Structure and Stability,” Journal of Biological Chemistry 285 (2010): 27302-27313.
|
| [42] |
N. Louros, M. Wilkinson, G. Tsaka, et al., “Local Structural Preferences in Shaping Tau Amyloid Polymorphism,” Nature Communications 15 (2024): 1028.
|
| [43] |
S. H. Scheres, W. Zhang, B. Falcon, and M. Goedert, “Cryo-EM Structures of Tau Filaments,” Current Opinion in Structural Biology 64 (2020): 17-25.
|
| [44] |
Y. Shi, W. Zhang, Y. Yang, et al., “Structure-Based Classification of Tauopathies,” Nature 598 (2021): 359-363.
|
| [45] |
S. Lövestam, D. Li, J. L. Wagstaff, et al., “Disease-Specific tau Filaments Assemble via Polymorphic Intermediates,” Nature 625 (2024): 119-125.
|
| [46] |
A. W. P. Fitzpatrick, B. Falcon, S. He, et al., “Cryo-EM Structures of Tau Filaments From Alzheimer's Disease,” Nature 547 (2017): 185-190.
|
| [47] |
Y. Q. Tao, C. Liu, and D. Li, “Heparin Bound Tau Fibril PHF,” (2024), https://doi.org/10.2210/pdb8ZX6/pdb.
|
| [48] |
S. Lövestam, F. A. Koh, B. van Knippenberg, et al., “Assembly of Recombinant Tau Into Filaments Identical to Those of Alzheimer's Disease and Chronic Traumatic Encephalopathy,” eLife 11 (2022): e76494.
|
| [49] |
C. Qi, R. Kobayashi, S. Kawakatsu, et al., “Tau Filaments With the Chronic Traumatic Encephalopathy Fold in a Case of Vacuolar Tauopathy With VCP Mutation D395G,” Acta Neuropathologica 147 (2024): 86.
|
| [50] |
W. Zhang, A. Tarutani, K. L. Newell, et al., “Novel Tau Filament Fold in Corticobasal Degeneration,” Nature 580 (2020): 283-287.
|
| [51] |
A. W. Fitzpatrick and H. R. Saibil, “Cryo-EM of Amyloid Fibrils and Cellular Aggregates,” Current Opinion in Structural Biology 58 (2019): 34-42.
|
| [52] |
A. Sachdeva and Z. J. Donhauser, “BPS2025-In-Vitro Assembly of Tau Fibers With Different Polyanionic Inducers Reveal Distinct Mechanics of the “Fuzzy-Coat”,” Biophysical Journal 124 (2025): 237a.
|
| [53] |
I. Khlistunova, J. Biernat, Y. Wang, et al., “Inducible Expression of Tau Repeat Domain in Cell Models of Tauopathy,” Journal of Biological Chemistry 281 (2006): 1205-1214.
|
| [54] |
M. D. Kane, W. J. Lipinski, M. J. Callahan, et al., “Evidence for Seeding of β-Amyloid by Intracerebral Infusion of Alzheimer Brain Extracts in β-Amyloid Precursor Protein-Transgenic Mice,” Journal of Neuroscience 20 (2000): 3606-3611.
|
| [55] |
F. Clavaguera, T. Bolmont, R. A. Crowther, et al., “Transmission and Spreading of Tauopathy in Transgenic Mouse Brain,” Nature Cell Biology 11 (2009): 909-913.
|
| [56] |
K. Lundmark, G. T. Westermark, S. Nyström, C. L. Murphy, A. Solomon, and P. Westermark, “Transmissibility of Systemic Amyloidosis by a Prion-Like Mechanism,” Proceedings of the National Academy of Sciences 99 (2002): 6979-6984.
|
| [57] |
B. Bandyopadhyay, G. Li, H. Yin, and J. Kuret, “Tau Aggregation and Toxicity in a Cell Culture Model of Tauopathy,” Journal of Biological Chemistry 282 (2007): 16454-16464.
|
| [58] |
A. Crowe, M. J. Henderson, J. Anderson, et al., “Compound Screening in Cell-Based Models of tau Inclusion Formation: Comparison of Primary Neuron and HEK293 Cell Assays,” Journal of Biological Chemistry 295 (2020): 4001-4013.
|
| [59] |
B. Frost, R. L. Jacks, and M. I. Diamond, “Propagation of Tau Misfolding From the Outside to the Inside of a Cell,” Journal of Biological Chemistry 284 (2009): 12845-12852.
|
| [60] |
T. Nonaka, S. T. Watanabe, T. Iwatsubo, and M. Hasegawa, “Seeded Aggregation and Toxicity of α-Synuclein and Tau,” Journal of Biological Chemistry 285 (2010): 34885-34898.
|
| [61] |
A. L. Woerman, A. Aoyagi, S. Patel, et al., “Tau Prions From Alzheimer's Disease and Chronic Traumatic Encephalopathy Patients Propagate in Cultured Cells,” Proceedings of the National Academy of Sciences 113 (2016): E8187-E8196.
|
| [62] |
P. Delobel, S. Flament, M. Hamdane, et al., “Functional Characterization of FTDP-17 Tau Gene Mutations Through Their Effects on Xenopus Oocyte Maturation,” Journal of Biological Chemistry 277 (2002): 9199-9205.
|
| [63] |
B. C. Kraemer, B. Zhang, J. B. Leverenz, J. H. Thomas, J. Q. Trojanowski, and G. D. Schellenberg, “Neurodegeneration and Defective Neurotransmission in a Caenorhabditis elegans Model of Tauopathy,” Proceedings of the National Academy of Sciences 100 (2003): 9980-9985.
|
| [64] |
N. M. Bonini and M. E. Fortini, “Human Neurodegenerative Disease Modeling Using Drosophila,” Annual Review of Neuroscience 26 (2003): 627-656.
|
| [65] |
G. R. Jackson, I. Salecker, X. Dong, et al., “Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons,” Neuron 21 (1998): 633-642.
|
| [66] |
A. de Calignon, M. Polydoro, M. Suárez-Calvet, et al., “Propagation of Tau Pathology in a Model of Early Alzheimer's Disease,” Neuron 73 (2012): 685-697.
|
| [67] |
T. Ishihara, M. Hong, B. Zhang, et al., “Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform,” Neuron 24 (1999): 751-762.
|
| [68] |
K. Spittaels, C. V. den Haute, J. V. Dorpe, et al., “Prominent Axonopathy in the Brain and Spinal Cord of Transgenic Mice Overexpressing Four-Repeat Human tau Protein,” American Journal of Pathology 155 (1999): 2153-2165.
|
| [69] |
F. Lim, F. Hernández, J. J. Lucas, P. Gómez-Ramos, M. A. Morán, and J. Ávila, “FTDP-17 Mutations in tau Transgenic Mice Provoke Lysosomal Abnormalities and Tau Filaments in Forebrain,” Molecular and Cellular Neuroscience 18 (2001): 702-714.
|
| [70] |
J. Lewis, E. McGowan, J. Rockwood, et al., “Neurofibrillary Tangles, Amyotrophy and Progressive Motor Disturbance in Mice Expressing Mutant (P301L) Tau Protein,” Nature Genetics 25 (2000): 402-405.
|
| [71] |
J. Götz, N. Deters, A. Doldissen, et al., “A Decade of Tau Transgenic Animal Models and Beyond,” Brain Pathology 17 (2007): 91-103.
|
| [72] |
J. Götz, “Tau and Transgenic Animal Models,” Brain Research Reviews 35 (2001): 266-286.
|
| [73] |
N. Basheer, L. Buee, J.-P. Brion, et al., “Shaping the Future of Preclinical Development of Successful Disease-Modifying Drugs Against Alzheimer's Disease: A Systematic Review of tau Propagation Models,” Acta Neuropathologica Communications 12 (2024): 52.
|
| [74] |
J. Sala-Jarque, K. Zimkowska, J. Ávila, I. Ferrer, and J. A. del Río, “Towards a Mechanistic Model of Tau-Mediated Pathology in Tauopathies: What Can We Learn From Cell-Based In Vitro Assays?” International Journal of Molecular Sciences 23 (2022): 11527.
|
| [75] |
K. Baumann, “Modelling Tauopathies,” Nature Reviews Molecular Cell Biology 25 (2024): 338-338.
|
| [76] |
T. P. J. Knowles and M. J. Buehler, “Nanomechanics of Functional and Pathological Amyloid Materials,” Nature Nanotechnology 6 (2011): 469-479.
|
| [77] |
Y. Li, H. Liang, H. Zhao, et al., “Characterization of Inter- and Intramolecular Interactions of Amyloid Fibrils by AFM-Based Single-Molecule Force Spectroscopy,” Journal of Nanomaterials 2016 (2016): 5463201.
|
| [78] |
K. R. Bhuskute, K. Kikuchi, Z. Luo, and A. Kaur, “Visualizing Amyloid Assembly at the Nanoscale: Insights from Super-Resolution Imaging,” Analysis & Sensing 4 (2024): e202400001.
|
| [79] |
A. Kaur, L. D. Adair, S. R. Ball, E. J. New, and M. Sunde, “A Fluorescent Sensor for Quantitative Super-Resolution Imaging of Amyloid Fibril Assembly,” Angewandte Chemie International Edition 61 (2022): e202112832.
|
| [80] |
M. E. Graziotto, L. D. Adair, A. Kaur, et al., “Versatile Naphthalimide Tetrazines for Fluorogenic Bioorthogonal Labelling,” RSC Chemical Biology 2 (2021): 1491-1498.
|
| [81] |
A. Kaur, L. D. Adair, S. R. Ball, E. J. New, and M. Sunde, “A Fluorescent Sensor for Quantitative Super-Resolution Imaging of Amyloid Fibril Assembly,” Angewandte Chemie 134 (2022): e202112832.
|
| [82] |
Z. Luo, Y. Xu, J. Fan, et al., “Flavonoid-Derived Probes for the Detection of Islet Amyloid Polypeptide Aggregates,” Analysis & Sensing 5 (2025): e202400104.
|
| [83] |
H. Forgham, S. V. Matre, K. H. Karen Chung, et al., “Amyloid Targeting-Gold Nanoparticles-Assisted X-Ray Therapy Rescues Islet β-Cells From Amyloid Fibrils and Restores Insulin Homeostasis,” ACS Nano 19 (2025): 5460-5474.
|
| [84] |
V. Berti, A. Pupi, and L. Mosconi, “PET/CT in Diagnosis of Dementia,” Annals of the New York Academy of Sciences 1228 (2011): 81-92.
|
| [85] |
E. Salmon, C. Bernard Ir, and R. Hustinx, “Pitfalls and Limitations of PET/CT in Brain Imaging,” Seminars in Nuclear Medicine 45 (2015): 541-551.
|
| [86] |
L. H. Meeter, L. D. Kaat, J. D. Rohrer, and J. C. van Swieten, “Imaging and Fluid Biomarkers in Frontotemporal Dementia,” Nature reviews Neurology 13 (2017): 406-419.
|
| [87] |
M. Egle, S. Hilal, A. M. Tuladhar, et al., “Prediction of Dementia Using Diffusion Tensor MRI Measures: The OPTIMAL Collaboration,” Journal of Neurology, Neurosurgery, and Psychiatry 93 (2022): 14-23.
|
| [88] |
G. Ramachandran, “Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils,” Methods in Molecular Biology Clifton NJ 1523 (2017): 113-128.
|
| [89] |
K. Sofińska, S. Seweryn, K. Skirlińska-Nosek, J. Barbasz, and E. Lipiec, “Tip-Enhanced Raman Spectroscopy Reveals the Structural Rearrangements of Tau Protein Aggregates at the Growth Phase,” Nanoscale 16 (2024): 5294-5301.
|
| [90] |
K. Kim, C. H. Lee, and C. B. Park, “Chemical Sensing Platforms for Detecting Trace-Level Alzheimer's Core Biomarkers,” Chemical Society Reviews 49 (2020): 5446-5472.
|
| [91] |
J. Sadeghzadeh, P. Shahabi, M. Farhoudi, A. Ebrahimi-Kalan, A. Mobed, and K. Shahpasand, “Tau Protein Biosensors in the Diagnosis of Neurodegenerative Diseases,” Advanced Pharmaceutical Bulletin 13 (2023): 502-511.
|
| [92] |
S. Nazir and R. A. Iqbal, “Recent Progress in the Application of Tau Protein Biosensors for Diagnosis of Neurodegenerative Diseases,” Applied Biochemistry and Biotechnology 196 (2024): 7476-7502.
|
| [93] |
E. V. Garcia, “Physical Attributes, Limitations, and Future Potential for PET and SPECT,” Journal of Nuclear Cardiology 19 (2012): 19-29.
|
| [94] |
R. Myers, S. Hume, P. Bloomfield, and T. Jones, “Radio-Imaging in Small Animals,” Journal of Psychopharmacology 13 (1999): 352-357.
|
| [95] |
W. W. Moses, “Fundamental Limits of Spatial Resolution in PET,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 648 (2011): S236-S240.
|
| [96] |
L. Gao, W. Wang, X. Wang, et al., “Fluorescent Probes for Bioimaging of Potential Biomarkers in Parkinson's Disease,” Chemical Society Reviews 50 (2021): 1219-1250.
|
| [97] |
J. Zhou, P. Jangili, S. Son, M. S. Ji, M. Won, and J. S. Kim, “Fluorescent Diagnostic Probes in Neurodegenerative Diseases,” Advanced Materials 32 (2020): 2001945.
|
| [98] |
M. Goedert, “The Neurofibrillary Pathology of Alzheimer's Disease,” Neuroscientist 3 (1997): 131-141.
|
| [99] |
G. C. Ruben, K. Iqbal, H. M. Wisniewski, J. E. Johnson, and I. Grundke-Iqbal, “Alzheimer Neurofibrillary Tangles Contain 2.1 nm Filaments Structurally Identical to the Microtubule-Associated Protein τ: A High-Resolution Transmission Electron Microscope Study of Tangles and Senile Plaque Core Amyloid,” Brain Research 590 (1992): 164-179.
|
| [100] |
H. Wang, X. Wang, P. Li, M. Dong, S. Q. Yao, and B. Tang, “Fluorescent Probes for Visualizing ROS-Associated Proteins in Disease,” Chemical Science 12 (2021): 11620-11646.
|
| [101] |
S. Kumar Krishnan, E. Singh, P. Singh, M. Meyyappan, and H. Singh Nalwa, “A Review on Graphene-Based Nanocomposites for Electrochemical and Fluorescent Biosensors,” RSC Advances 9 (2019): 8778-8881.
|
| [102] |
H. Wu, J.-H. Li, W.-C. Yang, et al., “Nonmetal-Doped Quantum Dot-Based Fluorescence Sensing Facilitates the Monitoring of Environmental Contaminants,” Environmental Analytical Chemistry 40 (2023): e00218.
|
| [103] |
C. Butler-Hallissey and C. Leterrier, “Super-Resolution Imaging of the Neuronal Cytoskeleton,” npj Imaging 2 (2024): 1-15.
|
| [104] |
C. Weissmann and R. Brandt, “Mechanisms of Neurodegenerative Diseases: Insights From Live Cell Imaging,” Journal of Neuroscience Research 86 (2008): 504-511.
|
| [105] |
B. Långström, P. E. Andrén, Ö. Lindhe, M. Svedberg, and H. Hall, “In Vitro Imaging Techniques in Neurodegenerative Diseases,” Molecular Imaging and Biology 9 (2007): 161-175.
|
| [106] |
Y. Shi, W. Zhang, Y. Xue, and J. Zhang, “Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives,” Chemosensors 11 (2023): 226.
|
| [107] |
J. Krämer, R. Kang, L. M. Grimm, L. De Cola, P. Picchetti, and F. Biedermann, “Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids,” Chemical Reviews 122 (2022): 3459-3636.
|
| [108] |
H. Rai, S. Gupta, S. Kumar, et al., “Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease,” Journal of Medicinal Chemistry 65 (2022): 8550-8595.
|
| [109] |
A. Åslund, C. J. Sigurdson, T. Klingstedt, et al., “Novel Pentameric Thiophene Derivatives for In Vitro and In Vivo Optical Imaging of a Plethora of Protein Aggregates in Cerebral Amyloidoses,” ACS Chemical Biology 4 (2009): 673-684.
|
| [110] |
V. Mani, V. G. Krishnakumar, S. Gupta, S. Mori, and I. Gupta, “Synthesis and Characterization of Styryl-BODIPY Derivatives for Monitoring In Vitro Tau Aggregation,” Sensors and Actuators B: Chemical 244 (2017): 673-683.
|
| [111] |
T. Xie, Y. Li, C. Tian, et al., “Fused Cycloheptatriene-BODIPY Is a High-Performance Near-Infrared Probe to Image Tau Tangles,” Journal of Medicinal Chemistry 65 (2022): 14527-14538.
|
| [112] |
E. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai, and T. M. Swager, “In Vivo Optical Imaging of Amyloid Aggregates in Brain: Design of Fluorescent Markers,” Angewandte Chemie International Edition 44 (2005): 5452-5456.
|
| [113] |
M. Groenning, “Binding Mode of Thioflavin T and Other Molecular Probes in the Context of Amyloid Fibrils—Current Status,” Journal of Chemical Biology 3 (2010): 1-18.
|
| [114] |
R. Khurana, C. Coleman, C. Ionescu-Zanetti, et al., “Mechanism of Thioflavin T Binding to Amyloid Fibrils,” Journal of Structural Biology 151 (2005): 229-238.
|
| [115] |
P. Verwilst, H. S. Kim, S. Kim, C. Kang, and J. S. Kim, “Shedding Light on tau Protein Aggregation: The Progress in Developing Highly Selective Fluorophores,” Chemical Society Reviews 47 (2018): 2249-2265.
|
| [116] |
D. S. Knopman, R. C. Petersen, and C. R. Jack, “A brief history of “Alzheimer Disease”,” Neurology 92 (2019): 1053-1059.
|
| [117] |
G. Gallardo and D. M. Holtzman, Tau Biology eds. A. Takashima, B. Wolozin, and L. Buee (Springer, 2019).
|
| [118] |
D. Styren Scot, R. L. Hamilton, G. C. Styren, and W. E. Klunk, “X-34, A Fluorescent Derivative of Congo Red: A Novel Histochemical Stain for Alzheimer's Disease Pathology,” Journal of Histochemistry and Cytochemistry 48 (2000): 1223-1232.
|
| [119] |
A. Velasco, G. Fraser, P. Delobel, B. Ghetti, I. Lavenir, and M. Goedert, “Detection of Filamentous tau Inclusions by the Fluorescent Congo Red Derivative FSB [(Trans, Trans)-1-Fluoro-2,5-Bis(3-Hydroxycarbonyl-4-Hydroxy)Styrylbenzene],” FEBS Letters 582 (2008): 901-906.
|
| [120] |
W. E. Klunk, B. J. Bacskai, C. A. Mathis, et al., “Imaging Aβ Plaques in Living Transgenic Mice With Multiphoton Microscopy and Methoxy-X04, a Systemically Administered Congo Red Derivative,” Journal of Neuropathology and Experimental Neurology 61 (2002): 797-805.
|
| [121] |
A. Boländer, D. Kieser, C. Voss, et al., “Bis(arylvinyl)pyrazines, -Pyrimidines, and -Pyridazines As Imaging Agents for Tau Fibrils and β-Amyloid Plaques in Alzheimer's Disease Models,” Journal of Medicinal Chemistry 55 (2012): 9170-9180.
|
| [122] |
A. Boländer, D. Kieser, C. Scholz, et al., “Synthesis of Methoxy-X04 Derivatives and Their Evaluation in Alzheimer's Disease Pathology,” Neurodegenerative Disease 13 (2013): 209-213.
|
| [123] |
M. Garcia-Alloza, L. A. Borrelli, A. Rozkalne, B. T. Hyman, and B. J. Bacskai, “Curcumin Labels Amyloid Pathology In vivo, Disrupts Existing Plaques, and Partially Restores Distorted Neurites in an Alzheimer Mouse Model,” Journal of Neurochemistry 102 (2007): 1095-1104.
|
| [124] |
K. Park, Y. Seo, M. K. Kim, et al., “A Curcumin-Based Molecular Probe for Near-Infrared Fluorescence Imaging of tau Fibrils in Alzheimer's Disease,” Organic & Biomolecular Chemistry 13 (2015): 11194-11199.
|
| [125] |
Y. Seo, K. Park, T. Ha, et al., “A Smart Near-Infrared Fluorescence Probe for Selective Detection of Tau Fibrils in Alzheimer's Disease,” ACS Chemical Neuroscience 7 (2016): 1474-1481.
|
| [126] |
K. Park, M. K. Kim, Y. Seo, et al., “A Difluoroboron β-Diketonate Probe Shows “Turn-On” Near-Infrared Fluorescence Specific for Tau Fibrils,” ACS Chemical Neuroscience 8 (2017): 2124-2131.
|
| [127] |
N. Okamura, T. Suemoto, S. Furumoto, et al., “Quinoline and Benzimidazole Derivatives: Candidate Probes for In Vivo Imaging of Tau Pathology in Alzheimer's Disease,” Journal of Neuroscience 25 (2005): 10857-10862.
|
| [128] |
N. S. Honson, R. L. Johnson, W. Huang, J. Inglese, C. P. Austin, and J. Kuret, “Differentiating Alzheimer Disease-Associated Aggregates With Small Molecules,” Neurobiology of Disease 28 (2007): 251-260.
|
| [129] |
K. Matsumura, M. Ono, S. Hayashi, et al., “Phenyldiazenyl Benzothiazole Derivatives as Probes for In Vivo Imaging of Neurofibrillary Tangles in Alzheimer's Disease Brains,” Medicinal Chemistry Communications 2 (2011): 596-600.
|
| [130] |
K. Matsumura, M. Ono, M. Yoshimura, et al., “Synthesis and Biological Evaluation of Novel Styryl Benzimidazole Derivatives as Probes for Imaging of Neurofibrillary Tangles in Alzheimer's Disease,” Bioorganic & Medicinal Chemistry 21 (2013): 3356-3362.
|
| [131] |
R. Harada, N. Okamura, S. Furumoto, et al., “Use of a Benzimidazole Derivative BF-188 in Fluorescence Multispectral Imaging for Selective Visualization of Tau Protein Fibrils in the Alzheimer's Disease Brain,” Molecular Imaging and Biology 16 (2014): 19-27.
|
| [132] |
M. Maruyama, H. Shimada, T. Suhara, et al., “Imaging of Tau Pathology in a Tauopathy Mouse Model and in Alzheimer Patients Compared to Normal Controls,” Neuron 79 (2013): 1094-1108.
|
| [133] |
J. Gu, U. R. Anumala, F. Lo Monte, et al., “2-Styrylindolium Based Fluorescent Probes Visualize Neurofibrillary Tangles in Alzheimer's Disease,” Bioorganic & Medicinal Chemistry Letters 22 (2012): 7667-7671.
|
| [134] |
S. Lim, M. M. Haque, D. Su, et al., “Development of a BODIPY-Based Fluorescent Probe for Imaging Pathological Tau Aggregates in Live Cells,” Chemical Communications 53 (2017): 1607-1610.
|
| [135] |
P. Verwilst, H.-R. Kim, J. Seo, et al., “Rational Design of In Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe,” Journal of the American Chemical Society 139 (2017): 13393-13403.
|
| [136] |
Y. Li, K. Wang, K. Zhou, et al., “Novel D-A-D Based Near-Infrared Probes for the Detection of β-Amyloid and Tau Fibrils in Alzheimer's Disease,” Chemical Communications 54 (2018): 8717-8720.
|
| [137] |
B. Zhu, T. Zhang, Q. Jiang, et al., “Synthesis and Evaluation of Pyrazine and Quinoxaline Fluorophores for In Vivo Detection of Cerebral Tau Tangles in Alzheimer's Models,” Chemical Communications 54 (2018): 11558-11561.
|
| [138] |
K. Zhou, C. Yuan, B. Dai, et al., “Environment-Sensitive Near-Infrared Probe for Fluorescent Discrimination of Aβ and Tau Fibrils in AD Brain,” Journal of Medicinal Chemistry 62 (2019): 6694-6704.
|
| [139] |
Y. Tu, K. Chai, J. Wu, et al., “A rational Design to Improve Selective Imaging of tau Aggregates by Constructing Side Substitution on N,N-Dimethylaniline/Quinoxaline D-π-A Fluorescent Probe,” Sensors and Actuators B: Chemical 380 (2023): 133406.
|
| [140] |
A. A. Elbatrawy, S. J. Hyeon, N. Yue, et al., ““Turn-On” Quinoline-Based Fluorescent Probe for Selective Imaging of Tau Aggregates in Alzheimer's Disease: Rational Design, Synthesis, and Molecular Docking,” ACS Sensors 6 (2021): 2281-2289.
|
| [141] |
H. Fu, M. Cui, L. Zhao, et al., “Highly Sensitive Near-Infrared Fluorophores for In Vivo Detection of Amyloid-β Plaques in Alzheimer's Disease,” Journal of Medicinal Chemistry 58 (2015): 6972-6983.
|
| [142] |
L. Rejc, L. Šmid, V. Kepe, et al., “Design, Syntheses, and In Vitro Evaluation of New Fluorine-18 Radiolabeled Tau-Labeling Molecular Probes,” Journal of Medicinal Chemistry 60 (2017): 8741-8757.
|
| [143] |
L. Ji, X. Zhou, R. Liu, et al., “Design of a Selective and Water-Soluble Fluorescent Probe Targeting Tau Fibrils for Intracellular and In Vivo Imaging,” Sensors and Actuators B: Chemical 380 (2023): 133415.
|
| [144] |
J. Gu, U. R. Anumala, R. Heyny-von Haußen, et al., “Design, Synthesis and Biological Evaluation of Trimethine Cyanine Dyes as Fluorescent Probes for the Detection of Tau Fibrils in Alzheimer's Disease Brain and Olfactory Epithelium,” ChemMedChem 8 (2013): 891-897.
|
| [145] |
M. Ono, S. Hayashi, K. Matsumura, et al., “Rhodanine and Thiohydantoin Derivatives for Detecting Tau Pathology in Alzheimer's Brains,” ACS Chemical Neuroscience 2 (2011): 269-275.
|
| [146] |
U. R. Anumala, J. Gu, F. Lo Monte, et al., “Fluorescent Rhodanine-3-Acetic Acids Visualize Neurofibrillary Tangles in Alzheimer's Disease Brains,” Bioorganic & Medicinal Chemistry 21 (2013): 5139-5144.
|
| [147] |
H. Watanabe, M. Ono, H. Kimura, et al., “Synthesis and Biological Evaluation of Novel Oxindole Derivatives for Imaging Neurofibrillary Tangles in Alzheimer's Disease,” Bioorganic & Medicinal Chemistry Letters 22 (2012): 5700-5703.
|
| [148] |
A. Ojida, T. Sakamoto, M. Inoue, S. Fujishima, G. Lippens, and I. Hamachi, “Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer's Disease Patients,” Journal of the American Chemical Society 131 (2009): 6543-6548.
|
| [149] |
H.-Y. Kim, U. Sengupta, P. Shao, M. J. Guerrero-Muñoz, R. Kayed, and M. Bai, “Alzheimer's Disease Imaging with a Novel Tau Targeted Near Infrared Ratiometric Probe,” American Journal of Nuclear Medicine and Molecular Imaging 3 (2013): 102-117.
|
| [150] |
L. Ge and Y. Tian, “Fluorescence Lifetime Imaging of p-Tau Protein in Single Neuron With a Highly Selective Fluorescent Probe,” Analytical Chemistry 91 (2019): 3294-3301.
|
| [151] |
C. A. Lasagna-Reeves, D. L. Castillo-Carranza, U. Sengupta, et al., “Alzheimer Brain-Derived Tau Oligomers Propagate Pathology From Endogenous Tau,” Scientific Reports 2 (2012): 700.
|
| [152] |
T. Klingstedt, A. Åslund, R. A. Simon, et al., “Synthesis of a Library of Oligothiophenes and Their Utilization as Fluorescent Ligands for Spectral Assignment of Protein Aggregates,” Organic & Biomolecular Chemistry 9 (2011): 8356-8370.
|
| [153] |
H. Shirani, H. Appelqvist, M. Bäck, T. Klingstedt, N. J. Cairns, and K. P. R. Nilsson, “Synthesis of Thiophene-Based Optical Ligands That Selectively Detect Tau Pathology in Alzheimer's Disease,” Chemistry—A European Journal 23 (2017): 17127-17135.
|
| [154] |
T. Klingstedt, H. Shirani, J. Mahler, et al., “Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish β-Amyloid or Tau Polymorphic Aggregates,” Chemistry—A European Journal 21 (2015): 9072-9082.
|
| [155] |
Y. Zhao, O. Tietz, W.-L. Kuan, et al., “A Fluorescent Molecular Imaging Probe With Selectivity for Soluble Tau Aggregated Protein,” Chemical Science 11 (2020): 4773-4778.
|
| [156] |
C. G. Galbraith and J. A. Galbraith, “Super-Resolution Microscopy at a Glance,” Journal of Cell Science 124 (2011): 1607-1611.
|
| [157] |
V. Hamel and P. Guichard, Methods in Cell Biology, ed. P. Guichard and V. Hame (Academic Press, 2021).
|
| [158] |
C. H. Michel, S. Kumar, D. Pinotsi, et al., “Extracellular Monomeric Tau Protein Is Sufficient to Initiate the Spread of Tau Protein Pathology,” Journal of Biological Chemistry 289 (2014): 956-967.
|
| [159] |
P. D. Sohn, C. T.-L. Huang, R. Yan, et al., “Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis,” Neuron 104 (2019): 458-470.e5.
|
| [160] |
K. Spehar, T. Ding, Y. Sun, et al., “Super-Resolution Imaging of Amyloid Structures Over Extended Times by Using Transient Binding of Single Thioflavin T Molecules,” Chembiochem 19 (2018): 1944-1948.
|
| [161] |
J. X. Meng, Y. Zhang, D. Saman, et al., “Hyperphosphorylated Tau Self-Assembles Into Amorphous Aggregates Eliciting TLR4-Dependent Responses,” Nature Communications 13 (2022): 2692.
|
| [162] |
B. Rajbanshi, A. Guruacharya, J. W. Mandell, and G. S. Bloom, “Localization, Induction, and Cellular Effects of Tau Phosphorylated at Threonine 217 1,” Alzheimer's Disease 19 (2023): 2874-2887.
|
| [163] |
E. Dimou, T. Katsinelos, G. Meisl, et al., “Super-Resolution Imaging Unveils the Self-Replication of Tau Aggregates Upon Seeding,” Cell Reports 42 (2023): 112725.
|
| [164] |
D. Böken, D. Cox, M. Burke, et al., “Single-Molecule Characterization and Super-Resolution Imaging of Alzheimer's Disease-Relevant Tau Aggregates in Human Samples,” Angewandte Chemie 136 (2024): e202317756.
|
| [165] |
E. Fertan, C. Hung, J. S. H. Danial, et al., “Clearance of Beta-Amyloid and Tau Aggregates Is Size Dependent and Altered by an Inflammatory Challenge,” Brain Communications 7 (2025): fcae454.
|
| [166] |
T. Nishikawa, T. Takahashi, M. Nakamori, et al., “The Identification of Raft-Derived Tau-Associated Vesicles That Are Incorporated Into Immature Tangles and Paired Helical Filaments,” Neuropathology and Applied Neurobiology 42 (2016): 639-653.
|
| [167] |
L. Collin, B. Bohrmann, U. Göpfert, K. Oroszlan-Szovik, L. Ozmen, and F. Grüninger, “Neuronal Uptake of Tau/pS422 Antibody and Reduced Progression of Tau Pathology in a Mouse Model of Alzheimer's Disease,” Brain 137 (2014): 2834-2846.
|
| [168] |
K. Rose, T. Jepson, S. Shukla, et al., “Tau Fibrils Induce Nanoscale Membrane Damage and Nucleate Cytosolic Tau at Lysosomes,” Proceedings of the National Academy of Sciences 121 (2024): e2315690121.
|
| [169] |
A. Benda, H. Aitken, D. S. Davies, R. Whan, and C. Goldsbury, “STED Imaging of Tau Filaments in Alzheimer's Disease Cortical Grey Matter,” Journal of Structural Biology 195 (2016): 345-352.
|
| [170] |
S. Biswas and K. Kalil, “The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones,” Journal of Neuroscience 38 (2018): 291-307.
|
| [171] |
W. Chen, L. J. Young, M. Lu, et al., “Fluorescence Self-Quenching From Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed In Vitro and in Cells,” Nano Letters 17 (2017): 143-149.
|
| [172] |
G. Matsumoto, K. Matsumoto, T. Kimura, et al., “Tau Fibril Formation in Cultured Cells Compatible With a Mouse Model of Tauopathy,” International Journal of Molecular Sciences 19 (2018): 1497.
|
| [173] |
S. Kang, S. M. Son, S. H. Baik, J. Yang, and I. Mook-Jung, “Autophagy-Mediated Secretory Pathway Is Responsible for Both Normal and Pathological Tau in Neurons,” Journal of Alzheimer's Disease 70 (2019): 667-680.
|
| [174] |
M. Joensuu, P. Padmanabhan, N. Durisic, et al., “Subdiffractional Tracking of Internalized Molecules Reveals Heterogeneous Motion States of Synaptic Vesicles,” Journal of Cell Biology 215 (2016): 277-292.
|
| [175] |
S. F. Longfield, M. Mollazade, T. P. Wallis, et al., “Tau Forms Synaptic Nano-Biomolecular Condensates Controlling the Dynamic Clustering of Recycling Synaptic Vesicles,” Nature Communications 14 (2023): 7277.
|
| [176] |
C. M. Huber, C. Yee, T. May, A. Dhanala, and C. S. Mitchell, “Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta Versus Tauopathy,” Journal of Alzheimer's Disease 61 (2018): 265-281.
|
| [177] |
V. L. Villemagne, V. Doré, P. Bourgeat, et al., “Aβ-Amyloid and Tau Imaging in Dementia,” Seminars in Nuclear Medicine 47 (2017): 75-88.
|
| [178] |
Y. Tao, X. Ran, J. Ren, and X. Qu, “Array-Based Sensing of Proteins and Bacteria By Using Multiple Luminescent Nanodots as Fluorescent Probes,” Small 10 (2014): 3667-3671.
|
| [179] |
C. Condello, T. Lemmin, J. Stöhr, et al., “Structural Heterogeneity and Intersubject Variability of Aβ in Familial and Sporadic Alzheimer's Disease,” Proceedings of the National Academy of Sciences 115 (2018): E782-E791.
|
| [180] |
H. Yang, P. Yuan, Y. Wu, et al., “EMBER Multidimensional Spectral Microscopy Enables Quantitative Determination of Disease- and Cell-Specific Amyloid Strains,” Proceedings of the National Academy of Sciences 120 (2023): e2300769120.
|
| [181] |
F. Lo Cascio, S. Park, U. Sengupta, et al., “Brain-Derived Tau Oligomer Polymorphs: Distinct Aggregations, Stability Profiles, and Biological Activities,” Communications Biology 8 (2025): 53.
|
| [182] |
N. Trinh, K. R. Bhuskute, N. R. Varghese, et al., “A Coumarin-Based Array for the Discrimination of Amyloids,” ACS Sensors 9 (2024): 615-621.
|
| [183] |
K. Kim, M.-J. Kim, D. W. Kim, S. Y. Kim, S. Park, and C. B. Park, “Clinically Accurate Diagnosis of Alzheimer's Disease via Multiplexed Sensing of Core Biomarkers in Human Plasma,” Nature Communications 11 (2020): 119.
|
| [184] |
C. Song, P. Deng, and L. Que, “Rapid Multiplexed Detection of Beta-Amyloid and Total-Tau as Biomarkers for Alzheimer's Disease in Cerebrospinal Fluid,” Nanomedicine: Nanotechnology, Biology and Medicine 14 (2018): 1845-1852.
|
| [185] |
A. Neely, C. Perry, B. Varisli, et al., “Ultrasensitive and Highly Selective Detection of Alzheimer's Disease Biomarker Using Two-Photon Rayleigh Scattering Properties of Gold Nanoparticle,” ACS Nano 3 (2009): 2834-2840.
|
| [186] |
I. Ziu, E. T. Laryea, F. Alashkar, C. G. Wu, and S. Martic, “A Dip-and-Read Optical Aptasensor for Detection of Tau Protein,” Analytical and Bioanalytical Chemistry 412 (2020): 1193-1201.
|
| [187] |
C. Duan, J. Jiao, J. Zheng, et al., “Polyvalent Biotinylated Aptamer Scaffold for Rapid and Sensitive Detection of Tau Proteins,” Analytical Chemistry 92 (2020): 15162-15168.
|
| [188] |
C. Duan, W. Cheng, Y. Yao, D. Li, Z. Wang, and Y. Xiang, “Universal and Flexible Signal Transduction Module Based on Overload Triggering Probe Escape for Sensitive Detection of Tau Protein,” Analytical Chemistry 94 (2022): 12919-12926.
|
| [189] |
L. M. T. Phan and S. Cho, “Fluorescent Aptasensor and Colorimetric Aptablot for p-tau231 Detection: Toward Early Diagnosis of Alzheimer's Disease,” Biomedicines 10 (2022): 93.
|
| [190] |
L. Zhang, K. Cao, Y. Su, et al., “Colorimetric and Surface-Enhanced Raman Scattering Dual-Mode Magnetic Immunosensor for Ultrasensitive Detection of Blood Phosphorylated Tau in Alzheimer's Disease,” Biosensors & Bioelectronics 222 (2023): 114935.
|
| [191] |
L. Zhang, Y. Su, X. Liang, K. Cao, Q. Luo, and H. Luo, “Ultrasensitive and Point-of-Care Detection of Plasma Phosphorylated Tau in Alzheimer's Disease Using Colorimetric and Surface-Enhanced Raman Scattering Dual-Readout Lateral Flow Assay,” Nano Research 16 (2023): 7459-7469.
|
| [192] |
C. Di Natale, S. Russo, F. Graziano, et al., “Sensitive Colorimetric Immunosensor Using AuNP-Functionalized Polymer Film for Picogram-Level Detection of Tau Protein Intermediate Aggregates,” Journal of Colloid & Interface Science 678 (2025): 1052-1059.
|
| [193] |
J. J. Vaquero and P. Kinahan, “Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems,” Annual Review of Biomedical Engineering 17 (2015): 385-414.
|
| [194] |
L. Zhu, K. Ploessl, and H. F. Kung, “PET/SPECT Imaging Agents for Neurodegenerative Diseases,” Chemical Society Reviews 43 (2014): 6683-6691.
|
| [195] |
P. M. Matthews, E. A. Rabiner, J. Passchier, and R. N. Gunn, “Positron Emission Tomography Molecular Imaging for Drug Development,” British Journal of Clinical Pharmacology 73 (2012): 175-186.
|
| [196] |
J. Trotter, A. R. Pantel, B.-K. K. Teo, et al., “Positron Emission Tomography (PET)/Computed Tomography (CT) Imaging in Radiation Therapy Treatment Planning: A Review of PET Imaging Tracers and Methods to Incorporate PET/CT,” Advances in Radiation Oncology 8 (2023): 101212.
|
| [197] |
J. Peñas, A. Alejo, A. Bembibre, et al., “Production of Carbon-11 for PET Preclinical Imaging using a High-Repetition Rate Laser-Driven Proton Source,” Scientific Reports 14 (2024): 11448.
|
| [198] |
Z. Mohammadi, H. Alizadeh, J. Marton, and P. Cumming, “The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET,” Biomolecules 13 (2023): 290.
|
| [199] |
M. Shah and A. M. Catafau, “Molecular Imaging Insights Into Neurodegeneration: Focus on Tau PET Radiotracers,” Journal of Nuclear Medicine 55 (2014): 871-874.
|
| [200] |
C. Lois, I. Gonzalez, K. A. Johnson, and J. C. Price, “PET Imaging of Tau Protein Targets: A Methodology Perspective,” Brain Imaging and Behavior 13 (2019): 333-344.
|
| [201] |
A. Leuzy, K. Chiotis, L. Lemoine, et al., “Tau PET Imaging in Neurodegenerative Tauopathies—Still a Challenge,” Molecular Psychiatry 24 (2019): 1112-1134.
|
| [202] |
D. C. Chung, S. Roemer, L. Petrucelli, and D. W. Dickson, “Cellular and Pathological Heterogeneity of Primary Tauopathies,” Molecular Neurodegeneration 16 (2021): 57.
|
| [203] |
L. K. Clinton, M. Blurton-Jones, K. Myczek, J. Q. Trojanowski, and F. M. LaFerla, “Synergistic Interactions Between Aβ, Tau, and α-Synuclein: Acceleration of Neuropathology and Cognitive Decline,” Journal of Neuroscience 30 (2010): 7281-7289.
|
| [204] |
D. J. Irwin, V. M.-Y. Lee, and J. Q. Trojanowski, “Parkinson's Disease Dementia: Convergence of α-Synuclein, Tau and Amyloid-β Pathologies,” Nature Reviews Neuroscience 14 (2013): 626-636.
|
| [205] |
V. L. Villemagne, S. Furumoto, M. Fodero-Tavoletti, et al., “The Challenges of Tau Imaging,” Future Neurology 7 (2012): 409-421.
|
| [206] |
J. Shin, V. Kepe, J. R. Barrio, and G. W. Small, “The Merits of FDDNP-PET Imaging in Alzheimer's Disease,” Journal of Alzheimer's Disease 26 (2011): 135-145.
|
| [207] |
A. Jacobson, A. Petric, D. Hogenkamp, A. Sinur, and J. R. Barrio, “1,1-Dicyano-2-[6-(Dimethylamino)Naphthalen-2-yl]Propene (DDNP): A Solvent Polarity and Viscosity Sensitive Fluorophore for Fluorescence Microscopy,” Journal of the American Chemical Society 118 (1996): 5572-5579.
|
| [208] |
E. D. Agdeppa, V. Kepe, J. Liu, et al., “2-Dialkylamino-6-Acylmalononitrile Substituted Naphthalenes (DDNP Analogs): Novel Diagnostic and Therapeutic Tools in Alzheimer's Disease,” Molecular Imaging and Biology 5 (2003): 404-417.
|
| [209] |
K. Shoghi-Jadid, G. W. Small, E. D. Agdeppa, et al., “Localization of Neurofibrillary Tangles and Beta-Amyloid Plaques in the Brains of Living Patients With Alzheimer Disease,” American Journal of Geriatric Psychiatry 10 (2002): 24-35.
|
| [210] |
R. Harada, N. Okamura, S. Furumoto, et al., “Comparison of the Binding Characteristics of [18F]THK-523 and Other Amyloid Imaging Tracers to Alzheimer's Disease Pathology,” European Journal of Nuclear Medicine and Molecular Imaging 40 (2013): 125-132.
|
| [211] |
L. M. Smid, T. D. Vovko, M. Popovic, et al., “The 2,6-Disubstituted Naphthalene Derivative FDDNP Labeling Reliably Predicts Congo Red Birefringence of Protein Deposits in Brain Sections of Selected Human Neurodegenerative Diseases,” Brain Pathology 16 (2006): 124-130.
|
| [212] |
C. Mathis, B. Lopresti, N. Mason, et al., “Comparison of the Amyloid Imaging Agents [F-18]3'-F-PIB and [C-11]PIB in Alzheimer's Disease and Control Subjects,” Journal of Nuclear Medicine 48 (2007): 56P-56P.
|
| [213] |
A. Noda, Y. Murakami, S. Nishiyama, et al., “Amyloid Imaging in Aged and Young Macaques With [11C]PIB and [18F]FDDNP,” Synapse 62 (2008): 472-475.
|
| [214] |
J. Shin, S.-Y. Lee, S.-H. Kim, Y.-B. Kim, and S.-J. Cho, “Multitracer PET Imaging of Amyloid Plaques and Neurofibrillary Tangles in Alzheimer's Disease,” Neuroimage 43 (2008): 236-244.
|
| [215] |
E. D. Hostetler, S. Sanabria-Bohórquez, H. Fan, et al., “[18F]Fluoroazabenzoxazoles as Potential Amyloid Plaque PET Tracers: Synthesis and In Vivo Evaluation in Rhesus Monkey,” Nuclear Medicine and Biology 38 (2011): 1193-1203.
|
| [216] |
G. Luurtsema, R. C. Schuit, K. Takkenkamp, et al., “Peripheral Metabolism of [18F]FDDNP and Cerebral Uptake of Its Labelled Metabolites,” Nuclear Medicine and Biology 35 (2008): 869-874.
|
| [217] |
N. Tolboom, E. L. G. E. Koedam, J. M. Schott, et al., “Dementia Mimicking Alzheimer's Disease Owing to a Tau Mutation: CSF and PET Findings,” Alzheimer Disease and Associated Disorders 24 (2010): 303-307.
|
| [218] |
N. Okamura, S. Furumoto, R. Harada, et al., “Novel 18 F-Labeled Arylquinoline Derivatives for Noninvasive Imaging of Tau Pathology in Alzheimer Disease,” Journal of Nuclear Medicine 54 (2013): 1420-1427.
|
| [219] |
M. T. Fodero-Tavoletti, N. Okamura, S. Furumoto, et al., “18F-THK523: A Novel In Vivo Tau Imaging Ligand for Alzheimer's Disease,” Brain 134 (2011): 1089-1100.
|
| [220] |
R. Harada, N. Okamura, S. Furumoto, et al., “[18F]THK-5117 PET for Assessing Neurofibrillary Pathology in Alzheimer's Disease,” European Journal of Nuclear Medicine and Molecular Imaging 42 (2015): 1052-1061.
|
| [221] |
R. Harada, N. Okamura, S. Furumoto, et al., “Characteristics of Tau and Its Ligands in PET Imaging,” Biomolecules 6 (2016): 7.
|
| [222] |
L. Lemoine, L. Saint-Aubert, I. Nennesmo, P.-G. Gillberg, and A. Nordberg, “Cortical Laminar Tau Deposits and Activated Astrocytes in Alzheimer's Disease Visualised by 3H-THK5117 and 3H-Deprenyl Autoradiography,” Scientific Reports 7 (2017): 45496.
|
| [223] |
T. Tago, S. Furumoto, N. Okamura, et al., “Preclinical Evaluation of [18F]THK-5105 Enantiomers: Effects of Chirality on Its Effectiveness as a Tau Imaging Radiotracer,” Molecular Imaging and Biology 18 (2016): 258-266.
|
| [224] |
R. Harada, N. Okamura, S. Furumoto, et al., “18F-THK5351: A Novel PET Radiotracer for Imaging Neurofibrillary Pathology in Alzheimer Disease,” Journal of Nuclear Medicine 57 (2016): 208-214.
|
| [225] |
K. Chiotis, L. Saint-Aubert, I. Savitcheva, et al., “Imaging In-Vivo Tau Pathology in Alzheimer's Disease With THK5317 PET in a Multimodal Paradigm,” European Journal of Nuclear Medicine and Molecular Imaging 43 (2016): 1686-1699.
|
| [226] |
M. Jonasson, A. Wall, K. Chiotis, et al., “Tracer Kinetic Analysis of (S)-18F-THK5117 as a PET Tracer for Assessing Tau Pathology,” Journal of Nuclear Medicine 57 (2016): 574-581.
|
| [227] |
L. Declercq, S. Celen, J. Lecina, et al., “Comparison of New Tau PET-Tracer Candidates With [18F]T808 and [18F]T807,” Molecular Imaging 15 (2016): 1536012115624920.
|
| [228] |
H. Kroth, F. Oden, J. Molette, et al., “Discovery and Preclinical Characterization of [18F]PI-2620, a Next-Generation Tau PET Tracer for the Assessment of Tau Pathology in Alzheimer's Disease and Other Tauopathies,” European Journal of Nuclear Medicine and Molecular Imaging 46 (2019): 2178-2189.
|
| [229] |
C.-F. Xia, J. Arteaga, G. Chen, et al., “[18F]T807, a Novel Tau Positron Emission Tomography Imaging Agent for Alzheimer's Disease,” Alzheimer's Disease 9 (2013): 666-676.
|
| [230] |
E. R. Zimmer, A. Leuzy, S. Gauthier, and P. Rosa-Neto, “Developments in Tau PET Imaging,” Canadian Journal of Neurological Sciences 41 (2014): 547-553.
|
| [231] |
C. V. M. L. Jie, V. Treyer, R. Schibli, and L. Mu, “Tauvid™: The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer's Disease,” Pharmaceuticals 14 (2021): 110.
|
| [232] |
W. Zhang, J. Arteaga, D. K. Cashion, et al., “A Highly Selective and Specific PET Tracer for Imaging of Tau Pathologies,” Journal of Alzheimer's Disease 31 (2012): 601-612.
|
| [233] |
S. Sanabria Bohórquez, J. Marik, A. Ogasawara, et al., “[18F]GTP1 (Genentech Tau Probe 1), a Radioligand for Detecting Neurofibrillary Tangle Tau Pathology in Alzheimer's Disease,” European Journal of Nuclear Medicine and Molecular Imaging 46 (2019): 2077-2089.
|
| [234] |
H. Kroth, F. Oden, J. Molette, et al., “PI-2620 Lead Optimization Highlights the Importance of Off-Target Assays to Develop a PET Tracer for the Detection of Pathological Aggregated Tau in Alzheimer's Disease and Other Tauopathies,” Journal of Medicinal Chemistry 64 (2021): 12808-12830.
|
| [235] |
M. Honer, L. Gobbi, H. Knust, et al., “Preclinical Evaluation of 18 F-RO6958948, 11C-RO6931643, and 11C-RO6924963 as Novel PET Radiotracers for Imaging Tau Aggregates in Alzheimer Disease,” Journal of Nuclear Medicine 59 (2018): 675-681.
|
| [236] |
G. E. Merz, M. J. Chalkley, S. K. Tan, et al., “Stacked Binding of a PET Ligand to Alzheimer's Tau Paired Helical Filaments,” Nature Communications 14 (2023): 3048.
|
| [237] |
A. M. Walji, E. D. Hostetler, H. Selnick, et al., “Discovery of 6-(Fluoro-18F)-3-(1H-Pyrrolo[2,3-c]Pyridin-1-yl)Isoquinolin-5-Amine ([18F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs),” Journal of Medicinal Chemistry 59 (2016): 4778-4789.
|
| [238] |
S. T. Harrison, J. Mulhearn, S. E. Wolkenberg, et al., “Synthesis and Evaluation of 5-Fluoro-2-Aryloxazolo[5,4-b]Pyridines as β-Amyloid PET Ligands and Identification of MK-3328,” ACS Medicinal Chemistry Letters 2 (2011): 498-502.
|
| [239] |
E. Hostetler, S. Sanabria-Bohórquez, H. Fan, et al., “[F-18]MK-3328: Evaluation of a Novel PET Tracer for Amyloid Plaque in Rhesus Monkey,” NeuroImage 52 (2010): S154.
|
| [240] |
E. D. Hostetler, A. M. Walji, Z. Zeng, et al., “Preclinical Characterization of 18 F-MK-6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles,” Journal of Nuclear Medicine 57 (2016): 1599-1606.
|
| [241] |
P. Kunach, J. Vaquer-Alicea, M. S. Smith, et al., “Cryo-EM Structure of Alzheimer's Disease Tau Filaments With PET Ligand MK-6240,” Nature Communications 15 (2024): 8497.
|
| [242] |
A. Leuzy, T. A. Pascoal, O. Strandberg, et al., “A Multicenter Comparison of [18F]Flortaucipir, [18F]RO948, and [18F]MK6240 Tau PET Tracers to Detect a Common Target ROI for Differential Diagnosis,” European Journal of Nuclear Medicine and Molecular Imaging 48 (2021): 2295-2305.
|
| [243] |
K. Tagai, M. Ono, M. Kubota, et al., “High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies,” Neuron 109 (2021): 42-58.e8.
|
| [244] |
H. Hashimoto, K. Kawamura, N. Igarashi, et al., “Radiosynthesis, Photoisomerization, Biodistribution, and Metabolite Analysis of 11C-PBB3 as a Clinically Useful PET Probe for Imaging of Tau Pathology,” Journal of Nuclear Medicine 55 (2014): 1532-1538.
|
| [245] |
V. L. Villemagne, V. Doré, S. C. Burnham, C. L. Masters, and C. C. Rowe, “Imaging Tau and Amyloid-β Proteinopathies in Alzheimer Disease and Other Conditions,” Nature Reviews Neurology 14 (2018): 225-236.
|
| [246] |
R. Ni, B. Ji, M. Ono, et al., “Comparative In Vitro and In Vivo Quantifications of Pathologic Tau Deposits and Their Association With Neurodegeneration in Tauopathy Mouse Models,” Journal of Nuclear Medicine 59 (2018): 960-966.
|
| [247] |
K. Tagai, Y. Ikoma, H. Endo, et al., “An Optimized Reference Tissue Method for Quantification of Tau Protein Depositions in Diverse Neurodegenerative Disorders by PET With 18F-PM-PBB3 (18F-APN-1607),” Neuroimage 264 (2022): 119763.
|
| [248] |
F. J. R. Rombouts, J.-I. Andrés, M. Ariza, et al., “Discovery of N-(Pyridin-4-yl)-1,5-Naphthyridin-2-Amines as Potential Tau Pathology PET Tracers for Alzheimer's Disease,” Journal of Medicinal Chemistry 60 (2017): 1272-1291.
|
| [249] |
F. J. R. Rombouts, L. Declercq, J.-I. Andrés, et al., “Discovery of N-(4-[18F]Fluoro-5-Methylpyridin-2-yl)Isoquinolin-6-Amine (JNJ-64326067), a New Promising Tau Positron Emission Tomography Imaging Tracer,” Journal of Medicinal Chemistry 62 (2019): 2974-2987.
|
| [250] |
L. Declercq, F. Rombouts, M. Koole, et al., “Preclinical Evaluation of 18 F-JNJ64349311, a Novel PET Tracer for Tau Imaging,” Journal of Nuclear Medicine 58 (2017): 975-981.
|
| [251] |
M. E. Schmidt, L. Janssens, D. Moechars, et al., “Clinical Evaluation of [18F] JNJ-64326067, a Novel Candidate PET Tracer for the Detection of Tau Pathology in Alzheimer's Disease,” European Journal of Nuclear Medicine and Molecular Imaging 47 (2020): 3176-3185.
|
| [252] |
S. L. Baker, K. Provost, W. Thomas, et al., “Evaluation of [18F]-JNJ-64326067-AAA Tau PET Tracer in Humans,” Journal of Cerebral Blood Flow and Metabolism 41 (2021): 3302-3313.
|
| [253] |
A. N. Nilson, K. C. English, J. E. Gerson, et al., “Tau Oligomers Associate With Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases,” Journal of Alzheimer's Disease 55 (2017): 1083-1099.
|
| [254] |
C. Balducci, F. Orsini, M. Cerovic, et al., “Tau Oligomers Impair Memory and Synaptic Plasticity Through the Cellular Prion Protein,” Acta Neuropathologica Communications 13 (2025): 17.
|
RIGHTS & PERMISSIONS
2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.