Microwave-Facilitated Sensitization Route Boosting Efficiency, Thermostability, and Multifunction of Nanophosphors

Conglin Liu , Yubin Wang , Ran Li , Guanhao Zhou , Asif Ali Haider , Xiaoting Huang , Xiaoyang Zhao , Yue Qin , Hong Li , Hongming Jiang , Junpeng Li , Dandan Gao , Jiyang Xie , Pengfei Zhang , Lei Lei , Jing Zhu

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70125

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70125 DOI: 10.1002/agt2.70125
RESEARCH ARTICLE

Microwave-Facilitated Sensitization Route Boosting Efficiency, Thermostability, and Multifunction of Nanophosphors

Author information +
History +
PDF

Abstract

Rare earth-activated nanophosphors (NPs) have attracted significant attention due to their promising applications in compact and portable optoelectronic devices. However, limited by inherent nanoscale effects, achieving stable and efficient luminescence remains a long-standing challenge. Herein, we developed microwave-facilitated Ce sensitization engineering to obtain desirable green-emitting NaSrY(PO4)2 (NSYP):Tb NPs. Compared to NSYP:Tb, benefiting from highly efficient Ce–Tb energy transfer, NSYP:Ce,Tb exhibits a 45.8-fold enhancement in green emission intensity, along with exceptional internal quantum efficiency (IQE) of 82.2% and outstanding thermostability (93% intensity retention at 423 K). For health lighting, the NSYP:Ce,Tb NPs enable a high-quality white lighting source with remarkable color rendering index of 94. For multimodal non-contact thermometry, it can realize superior relative sensitivities across broad temperature ranges (2.28% K−1 at 473 K and 2.20% K−1 at 298 K). For X-ray imaging, it reaches a spatial resolution of up to 18.1 lp/mm, which surpasses commercially mainstream scintillators by above 70%. This study provides a microwave-facilitated sensitization route for multifunctional nanomaterials with high performance.

Keywords

energy transfer / green emission / microwave-assisted hydrothermal synthesis / nanophosphor

Cite this article

Download citation ▾
Conglin Liu, Yubin Wang, Ran Li, Guanhao Zhou, Asif Ali Haider, Xiaoting Huang, Xiaoyang Zhao, Yue Qin, Hong Li, Hongming Jiang, Junpeng Li, Dandan Gao, Jiyang Xie, Pengfei Zhang, Lei Lei, Jing Zhu. Microwave-Facilitated Sensitization Route Boosting Efficiency, Thermostability, and Multifunction of Nanophosphors. Aggregate, 2025, 6(10): e70125 DOI:10.1002/agt2.70125

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Lei, M. H. Yi, Y. B. Wang, et al., “Dual Heterogeneous Interfaces Enhance X-ray Excited Persistent Luminescence for Low-Dose 3D Imaging,” Nature Communications 15 (2024): 1140.

[2]

J. L. Fan, H. B. Li, W. Liu, and G. F. Ouyang, “Fabrication Strategies of Mn2+-Based Scintillation Screens for X-Ray Detection and Imaging,” Angewandte Chemie International Edition 64 (2025): e202425661.

[3]

M. H. Fang, Z. Bao, W. T. Huang, and R. S. Liu, “Evolutionary Generation of Phosphor Materials and Their Progress in Future Applications for Light-Emitting Diodes,” Chemical Reviews 122 (2022): 11474-11513.

[4]

B. Zhou , L. Yan, J. S. Huang, X. L. Liu, L. L. Tao, and Q. Y. Zhang, “NIR II-Responsive Photon Upconversion Through Energy Migration in an Ytterbium Sublattice,” Nature Photonics 14 (2020): 760-766.

[5]

M. Zhao, Y. P. Ge, Y. R. Li, X. Y. Song, Z. G. Xia, and X. P. Zhang, “Suppressed Concentration Quenching and Tunable Photoluminescence in Eu2+-Activated Rb3Y(PO4)2 Phosphors for Full-Spectrum Lighting,” Light: Science & Applications 13 (2024): 266.

[6]

L. Yan, J. S. Huang, Z. C. An, Q. Y. Zhang, and B. Zhou, “Spatiotemporal Control of Photochromic Upconversion Through Interfacial Energy Transfer,” Nature Communications 15 (2024): 1923.

[7]

F. Li, L. P. Tu, Y. Q. Zhang, et al., “Size-Dependent Lanthanide Energy Transfer Amplifies Upconversion Luminescence Quantum Yields,” Nature Photonics 18 (2024): 440-449.

[8]

S. F. Liu, X. F. Yang, R. K. Du, et al., “Single-Grain High-Efficiency Full-Visible-Spectrum White Emitters,” Angewandte Chemie International Edition 64 (2025): e202502100.

[9]

S. Rodriguez-Liviano, F. J. Aparicio, T. C. Rojas, A. B. Hungría, L. E. Chinchilla, and M. Ocaña, “Microwave-Assisted Synthesis and Luminescence of Mesoporous RE-Doped YPO 4 (RE = Eu, Ce, Tb, and Ce + Tb) Nanophosphors With Lenticular Shape,” Crystal Growth & Design 12 (2012): 635-645.

[10]

I. Ayoub, U. Mushtaq, G. B. Nair, G. Sundaram, H. C. Swart, and V. Kumar, “Exploring the Sr2 Ga2 GeO7:Tb3+ Long Persistent Luminescence Phosphor for Cutting-Edge Forensic Solutions in Latent Fingerprint Detection and Anticounterfeiting Applications,” Small 21 (2025): 2500285.

[11]

J. W. Chang, Y. Wang, Z. X. Zhang, et al., “Structural Confinement Induced Near-Unity Quantum Yield for Single-Band Ratiometric Thermometry,” Laser & Photonics Reviews 17 (2023): 2300542.

[12]

M. X. Deng, X. Z. Cao, Y. M. Tang, et al., “Gradient Defects Mediate Negative Thermal Quenching in Phosphors,” Advanced Photonics 5 (2023): 026001.

[13]

Y. S. Sun, Y. Z. Wang, W. B. Chen, et al., “Rapid Synthesis of Phosphor-Glass Composites in Seconds Based on Particle Self-Stabilization,” Nature Communications 15 (2024): 1033.

[14]

Z. Niu, B. C. Yu, F. Xu, et al., “Color-Tunable Luminescence and Temperature Sensing in Ce3+/Tb3+ Co-Doped Transparent Oxyfluoride Glass-Ceramics Containing Na1.5Y2.5F9 Nanocrystals,” Journal of Luminescence 246 (2022): 118834.

[15]

X. Y. Meng, L. R. Zhang, C. L. Zhong, et al., “Enhanced Photoluminescence and Energy Transfer of Li+ Co-Doped GdPO4·H2O:Tb3+,Ce3+ Green Phosphors,” Ceramics International 51 (2025): 25169-25181.

[16]

A. C. Yanes and J. del-Castillo, “Enhanced Red and Green Emissions in Sr2GdF7-Based Nano-Glass-Ceramics through Ce3+ Sensitization and Energy Migration,” Optical Materials 159 (2025): 116567.

[17]

M. Jia, J. X. Wen, X. P. Pan, et al., “Flexible Scintillation Silica Fiber With Engineered Nanocrystals for Remote Real-Time X-Ray Detection,” ACS Applied Materials & Interfaces 14 (2022): 1362-1372.

[18]

D. W. Wu, J. C. Zhou, X. R. Lin, et al., “Structure, Luminescence, and Energy Transfer of a Narrow-Band Green-Emitting Phosphor Ce5Si3O12N:Tb3+ for Near-Ultraviolet Light-Emitting Diode-Driven Liquid-Crystal Display,” ACS Applied Electronic Materials 3 (2021): 406-414.

[19]

T. M. Jiang, X. Yu, X. H. Xu, H. L. Yu, D. C. Zhou, and J. B. Qiu, “Tunable Emitting-Color and Energy Transfer of KCaY(PO4)2: Ce3+,Tb3+ Phosphors for UV-Excited White Light-Emitting-Diodes,” Materials Research Bulletin 51 (2014): 80-84.

[20]

X. F. Wang, Q. Yang, G. G. Wang, X. Z. Wang, and J. C. Han, “A New Single-Component KCaY(PO4)2:Dy3+, Eu3+ Nanosized Phosphor With High Color-Rendering Index and Excellent Thermal Resistance for Warm-White NUV-LED,” RSC Advances 6 (2016): 96263-96274.

[21]

Y. C. Chen, W. Y. Huang, and T. M. Chen, “Enhancing the Performance of Photovoltaic Cells by using Down-Converting KCaGd(PO4)2:Eu3+ Phosphors,” Journal of Rare Earths 29 (2011): 907-910.

[22]

D. Wang and Y. H. Wang, “Spectroscope Properties of KCaY(PO4)2:Eu3+ in Vacuum Ultraviolet Region,” Materials Science and Engineering: B 133 (2006): 218-221.

[23]

X. X. Liu, L. P. Tu, F. Li, D. X. Huang, H. Ågren, and G. Y. Chen, “Unravelling Size-Dependent Upconversion Luminescence in Ytterbium and Erbium Codoped NaYF 4 Nanocrystals,” Journal of the American Chemical Society 147 (2025): 5955-5961.

[24]

H. L. Zhang, B. Zhang, C. Y. Cai, et al., “Water-Dispersible X-Ray Scintillators Enabling Coating and Blending With Polymer Materials for Multiple Applications,” Nature Communications 15 (2024): 2055.

[25]

X. Chen, L. M. Jin, W. Kong, et al., “Confining Energy Migration in Upconversion Nanoparticles Towards Deep Ultraviolet Lasing,” Nature Communications 7 (2024): 10304.

[26]

N. R. Council, Microwave Processing of Materials (The National Academies Press, 1994).

[27]

M. J. Zhang, Y. D. Duan, C. Yin, et al., “Ultrafast Solid-Liquid Intercalation Enabled by Targeted Microwave Energy Delivery,” Science Advances 6 (2020): 9472.

[28]

A. de la Hoz, A. Díaz-Ortiz, and A. Moreno, “Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects,” Chemical Society Reviews 34 (2005): 164-178.

[29]

G. Q. Tan, L. L. Zhang, H. J. Ren, S. S. Wei, J. Huang, and A. Xia, “Effects of pH on the Hierarchical Structures and Photocatalytic Performance of BiVO4 Powders Prepared via the Microwave Hydrothermal Method,” ACS Applied Materials & Interfaces 5 (2013): 5186-5193.

[30]

W. X. Xu, S. N. Zhang, A. Q. Wei, et al., “Advancing Multi-Optical Performances in Lanthanide-Doped Fluoride Core@Shell Nanoarchitectures by Minimizing Cation Intermixing,” Advanced Functional Materials (2024): 2415815.

[31]

W. R. Liu, C. H. Huang, C. W. Yeh, et al., “A Study on the Luminescence and Energy Transfer of Single-Phase and Color-Tunable KCaY(PO4)2:Eu2+,Mn2+ Phosphor for Application in White-Light LEDs,” Inorganic Chemistry 51 (2012): 9636-9641.

[32]

S. H. You, S. X. Li, Y. C. Jia, and R. J. Xie, “Interstitial Site Engineering for Creating Unusual Red Emission in La3Si6N11:Ce3+,” Chemistry of Materials 32 (2020): 3631-3640.

[33]

L. Wang, Q. X. Guo, J. S. Duan, et al., “Exploration of Nontoxic Cs3CeBr6 for Violet Light-Emitting Diodes,” ACS Energy Letters 6 (2021): 4245-4254.

[34]

R. V. Perrella, M. Walker, T. W. Chamberlain, R. I. Walton, and P. C. S. Filho, “The Influence of Defects on the Luminescence of Trivalent Terbium in Nanocrystalline Yttrium Orthovanadate,” Nano Letters 22 (2022): 3569-3575.

[35]

J. R. Ling, Y. F. Zhou, W. T. Xu, et al., “Red-emitting YAG: Ce, Mn Transparent Ceramics for Warm WLEDs Application,” Journal of Advanced Ceramics 9 (2020): 45-54.

[36]

K. Munirathnam, G. R. Dillip, S. Chaurasia, S. W. Joo, B. .D. Prasad Raju, and N. .J. Sushma, “Investigations on Surface Chemical Analysis Using X-ray Photoelectron Spectroscopy and Optical Properties of Dy3+-doped LiNa3P2O7 Phosphor,” Journal of Molecular Structure 1118 (2016): 117-123.

[37]

W. H. Yuan, R. Pang, S. W. Wang, et al., “Enhanced Blue-Light Excited Cyan-Emitting Persistent Luminescence of BaLu2Al2Ga2SiO12:Ce3+, Bi3+ Phosphors for AC-LEDs via Defect Modulation,” Light: Science & Applications 11 (2022): 184.

[38]

Y. C. Lin, M. Bettinelli, and M. Karlsson, “Unraveling the Mechanisms of Thermal Quenching of Luminescence in Ce3+-Doped Garnet Phosphors,” Chemistry of Materials 31 (2019): 3851-3862.

[39]

W. H. Yuan, R. Pang, S. W. Tan, et al., “Multifunctional Near-Infrared Long Persistent Luminescence Phosphor BaLu2Al2Ga2SiO12:Cr3+, Tb3+ With Good Thermal Stability, Promising Quantum Efficiency, and Excellent Environmental Resistance,” Chemical Engineering Journal 481 (2024): 148071.

[40]

M. M. Shang, C. Li, and J. Lin, “How to Produce White Light in a Single-Phase Host?,” Chemical Society Reviews 43 (2014): 1372-1386.

[41]

Z. Lu, D. S. Sun, S. D. Shen, et al., “Efficient Energy Transfer for Near-Perfect Quantum Efficiency and Thermal Stability,” ACS Applied Materials & Interfaces 16 (2024): 31304-31312.

[42]

M. A. Zhernakov, A. E. Sedykh, Y. G. Denisenko, et al., “Luminescent Thermometer Systems Dy3+/Eu3+ and Tb3+/Sm3+ Based on Coordination Compounds: New Pairs to the Approved Tb3+/Eu3+?,” Chemistry of Materials 36 (2024): 9704-9717.

[43]

X. Y. Shi, Y. Q. Chen, G. X. Li, et al., “Designing a Dual-wavelength Excitation Eu3+/Mn4+ Co-doped Phosphors for High-sensitivity Luminescence Thermometry,” Ceramics International 49 (2023): 20839-20848.

[44]

Y. X. Ma, X. P. Zhou, J. P. Wu, et al., “Luminescence Thermometry via Multiparameter Sensing in YV1- xPXO4:Eu3+, Er3+,” Journal of the American Chemical Society 147 (2025): 12925-12936.

[45]

X. Liu, G. M. Niu, X. W. Wang, et al., “Exploring the Potential Applications of Lanthanide-Based Double Perovskite in Remote Pressure and Temperature Sensing,” Journal of Physical Chemistry Letters 14 (2023): 6880-6887.

[46]

Y. F. Xiang, L. Yang, C. Y. Liao, et al., “Thermometric Properties of Na2Y2TeB2O10:Tb3+ Green Phosphor Based on Fluorescence/Excitation Intensity Ratio,” Journal of Advanced Ceramics 12 (2023): 848-860.

[47]

G. Q. Li, X. Chen, M. Wang, et al., “Regulating Exciton De-Trapping of Te4+-Doped Zero-Dimensional Scandium-Halide Perovskite for Fluorescence Thermometry With Record High Time-Resolved Thermal Sensitivity,” Advanced Materials 35 (2023): 2305495.

[48]

B. Zhao, X. Qin, Z. Feng, et al., “Performance Evaluation of CsI Screens for X-Ray Imaging,” Chinese Physics C 38 (2014): 116003.

[49]

J. H. Heo, D. H. Shin, J. K. Park, D. H. Kim, S. J. Lee, and S. H. Im, “High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-Ray Imaging,” Advanced Materials 30 (2018): 1801743.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/