Modulating Molecular Aggregations via Konjac Glucomannan for High-Contrast Time-Dependent Phosphorescence Color

Ping Wu , Pengyu Li , Mingxing Chen , Gegu Chen , Mingfei Li , Baozhong Lü , Xu-Min Cai , Junli Ren , Feng Peng

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70124

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70124 DOI: 10.1002/agt2.70124
RESEARCH ARTICLE

Modulating Molecular Aggregations via Konjac Glucomannan for High-Contrast Time-Dependent Phosphorescence Color

Author information +
History +
PDF

Abstract

Materials exhibiting time-dependent phosphorescence color (TDPC) are attractive, but generally suffer from complex preparation processes and low-color contrast. Herein, molecular aggregation regulation of 1-pyrenecarboxylic acid (PyC) in the konjac glucomannan (KGM) matrix is proposed to realize high-contrast TDPC. The steric hindrance of KGM enables isolated state, carboxyl dimer, and π-stacking-induced multimers of PyC with different phosphorescence wavelengths and lifetimes to coexist, leading to a typical TDPC evolution from red to blue-green. The TDPC shows remarkable phosphorescence wavelength shift up to 182 nm and phosphorescence lifetime up to 788.43 ms, readily recognized by the naked eye. In addition, KGM, an edible natural polysaccharide, displays decent rheological properties suitable for screen printing, film casting, and 3D printing, making PyC-KGM an eco-friendly tool for multi-dimensional information security applications. The work provides a simple yet efficient method for high-contrast TDPC materials and affords a promising material for high-level dynamic information encryption and anti-counterfeiting.

Keywords

aggregation / anti-counterfeiting / konjac glucomannan / room-temperature phosphorescence / time-dependent phosphorescence color

Cite this article

Download citation ▾
Ping Wu, Pengyu Li, Mingxing Chen, Gegu Chen, Mingfei Li, Baozhong Lü, Xu-Min Cai, Junli Ren, Feng Peng. Modulating Molecular Aggregations via Konjac Glucomannan for High-Contrast Time-Dependent Phosphorescence Color. Aggregate, 2025, 6(10): e70124 DOI:10.1002/agt2.70124

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Zhang, Y. Cheng, J. You, J. Zhang, C. Yin, and J. Zhang, “Ultralong Phosphorescence Cellulose With Excellent Anti-Bacterial, Water-Resistant and Ease-to-Process Performance,” Nature Communications 13 (2022): 1117.

[2]

Q. Gao, M. Shi, Z. Lu, et al., “Large-Scale Preparation for Multicolor Stimulus-Responsive Room-Temperature Phosphorescence Paper via Cellulose Heterogeneous Reaction,” Advanced Materials 35 (2023): e2305126.

[3]

S. Cai, H. Ma, H. Shi, et al., “Enabling Long-Lived Organic Room Temperature Phosphorescence in Polymers by Subunit Interlocking,” Nature Communications 10 (2019): 4247.

[4]

J. Song, Y. Zhou, Z. Pan, et al., “An Elastic Organic Crystal With Multilevel Stimuli-Responsive Room Temperature Phosphorescence,” Matter 6 (2023): 2005-2018.

[5]

X.-Y. Wang, J. Gong, H. Zou, S. H. Liu, and J. Zhang, “Aggregation-Induced Conversion From TADF to Phosphorescence of Gold(I) Complexes With Millisecond Lifetimes,” Aggregate 4 (2023): e252.

[6]

Z. An, C. Zheng, Y. Tao, et al., “Stabilizing Triplet Excited States for Ultralong Organic Phosphorescence,” Nature Materials 14 (2015): 685-690.

[7]

T. Chen and D. Yan, “Full-Color, Time-Valve Controllable and Janus-Type Long-Persistent Luminescence From All-Inorganic Halide Perovskites,” Nature Communications 15 (2024): 5281.

[8]

F. Nie and D. Yan, “Flexible Crystals Meet Dynamic Phosphorescence,” Matter 6 (2023): 2558-2560.

[9]

G. Yin, W. Lu, J. Huang, et al., “Ultralong Excimer Phosphorescence by the Self-Assembly and Confinement of Terpyridine Derivatives in Polymeric Matrices,” Aggregate 4 (2023): e344.

[10]

H. Wang and H. Shi, “Lignin Rebirth Enables Sustainable Afterglow Emission,” Matter 4 (2021): 3087-3088.

[11]

J. Yuan, Y. Zhai, K. Wan, et al., “Sustainable Afterglow Materials From Lignin Inspired by Wood Phosphorescence,” Cell Reports Physical Science 2 (2021): 100542.

[12]

M. Cao, F. Liu, X. Huo, et al., “Producing Naturally Degradable Room-Temperature Phosphorescent Materials by Covalently Attaching Lignin to Natural Polymers,” Cell Reports Physical Science 5 (2024): 101811.

[13]

B. , Q. Gao, P. Li, et al., “Natural Ultralong Hemicelluloses Phosphorescence,” Cell Reports Physical Science 3 (2022): 101015.

[14]

Y. Kong, Y.-C. Wang, X. Huang, W. Liang, and Y. Zhao, “Switching On/Off Phosphorescent or Non-Radiative Channels by Aggregation-Induced Quantum Interference,” Aggregate 5 (2024): e395.

[15]

X.-K. Ma, Q. Cheng, X. Zhou, and Y. Liu, “Macrocycle γ-Cyclodextrin Confined Polymeric Chromophore Ultralong Phosphorescence Energy Transfer,” JACS Au 3 (2023): 2036-2043.

[16]

M. Shi, Q. Gao, J. Rao, et al., “Confinement-Modulated Clusterization-Triggered Time-Dependent Phosphorescence Color From Xylan-Carbonized Polymer Dots,” Journal of the American Chemical Society 146 (2024): 1294-1304.

[17]

Y. Gao, W. Ye, K. Qiu, et al., “Regulating Isolated-Molecular and Aggregated-State Phosphorescence for Multicolor Afterglow by Photoactivation,” Advanced Materials 35 (2023): 2306501.

[18]

S. Cai, X. Yao, H. Ma, H. Shi, and Z. An, “Manipulating Intermolecular Interactions for Ultralong Organic Phosphorescence,” Aggregate 4 (2023): e320.

[19]

X. Zhou, X. Zhao, X. Bai, Q. Cheng, and Y. Liu, “Thermal Activated Reversible Phosphorescence Behavior of Solid Supramolecule Mediated by β -Cyclodextrin,” Advanced Functional Materials 34 (2024): 2400898.

[20]

S. Cai, Z. Sun, H. Wang, et al., “Ultralong Organic Phosphorescent Foams With High Mechanical Strength,” Journal of the American Chemical Society 143 (2021): 16256-16263.

[21]

Z. H. Zhao, P. C. Zhao, S. Y. Chen, Y. X. Zheng, J. L. Zuo, and C. H. Li, “Tough, Reprocessable, and Recyclable Dynamic Covalent Polymers With Ultrastable Long-Lived Room-Temperature Phosphorescence,” Angewandte Chemie International Edition 62 (2023): e202301993.

[22]

Y. Zhai, S. Li, J. Li, et al., “Room Temperature Phosphorescence From Natural Wood Activated by External Chloride Anion Treatment,” Nature Communications 14 (2023): 2614.

[23]

H. Ding, Y. Sun, M. Tang, et al., “Time-Dependent Photo-Activated Aminoborane Room-Temperature Phosphorescence Materials With Unprecedented Properties: Simple, Versatile, Multicolor-Tuneable, Water Resistance, Optical Information Writing/Erasing, and Multilevel Data Encryption,” Chemical Science 14 (2023): 4633-4640.

[24]

Y. Ding, X. Wang, M. Tang, and H. Qiu, “Tailored Fabrication of Carbon Dot Composites With Full-Color Ultralong Room-Temperature Phosphorescence for Multidimensional Encryption,” Advanced Science 9 (2022): 2103833.

[25]

J. Tan, Q. Li, S. Meng, et al., “Time-Dependent Phosphorescence Colors From Carbon Dots for Advanced Dynamic Information Encryption,” Advanced Materials 33 (2021): 2006781.

[26]

W. Shi, R. Wang, J. Liu, F. Peng, R. Tian, and C. Lu, “Time-Dependent Phosphorescence Color of Carbon Dots in Binary Salt Matrices Through Activations by Structural Confinement and Defects for Dynamic Information Encryption,” Angewandte Chemie International Edition 135 (2023): e202303063.

[27]

Y. Liang, C. Xu, H. Zhang, et al., “Color-Tunable Dual-Mode Organic Afterglow From Classical Aggregation-Caused Quenching Compounds for White-Light-Manipulated Anti-Counterfeiting,” Angewandte Chemie International Edition 62 (2023): e202217616.

[28]

P. Liao, T. Wu, C. Ma, J. Huang, and Y. Yan, “Super Phosphorescence Resonance Energy Transfer (PRET) of Clusterization-Triggered Emission Enables Full-Spectrum Dynamic Room-Temperature Afterglow,” Advanced Optical Materials 11 (2022): 2202482.

[29]

X. Zheng, Q. Han, Q. Lin, et al., “A Processable, Scalable, and Stable Full-Color Ultralong Afterglow System Based on Heteroatom-Free Hydrocarbon Doped Polymers,” Materials Horizons 10 (2023): 197-208.

[30]

D. Li, J. Yang, M. Fang, B. Z. Tang, and Z. Li, “Stimulus-Responsive Room Temperature Phosphorescence Materials With Full-Color Tunability From Pure Organic Amorphous Polymers,” Science Advances 8 (2022): eabl8392.

[31]

J. Liang, J. Yang, Y. Wang, et al., “Efficient Photo-Induced RTP Materials Based on Phenothiazine and Polycyclic Aromatic Hydrocarbons: Tunable Emission Color and Thermal Stimulus Response,” Science China Materials 67 (2024): 2778-2788.

[32]

T. H. Chen, Y. J. Ma, and D. P. Yan, “Single-Component 0D Metal-Organic Halides With Color-Variable Long-Afterglow Toward Multi-Level Information Security and White-Light LED,” Advanced Functional Materials 33 (2023): 2214962.

[33]

J. Chen, T. Yu, E. Ubba, et al., “Achieving Dual-Emissive and Time-Dependent Evolutive Organic Afterglow by Bridging Molecules With Weak Intermolecular Hydrogen Bonding,” Advanced Optical Materials 7 (2019): 1801593.

[34]

L. Zhan, Z. Chen, S. Gong, et al., “A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter,” Angewandte Chemie International Edition 58 (2019): 17651-17655.

[35]

W. Li, Q. Huang, Z. Mao, et al., “A Dish-Like Molecular Architecture for Dynamic Ultralong Room-Temperature Phosphorescence Through Reversible Guest Accommodation,” Nature Communications 13 (2022): 7423.

[36]

Y. Su, Y. Zhang, Z. Wang, et al., “Excitation-Dependent Long-Life Luminescent Polymeric Systems Under Ambient Conditions,” Angewandte Chemie International Edition 59 (2020): 9967-9971.

[37]

F. Peng, Y. Chen, H. Liu, P. Chen, F. Peng, and H. Qi, “Color-Tunable, Excitation-Dependent, and Water Stimulus-Responsive Room-Temperature Phosphorescence Cellulose for Versatile Applications,” Advanced Materials 35 (2023): 2304032.

[38]

L. Gu, H. Shi, L. Bian, et al., “Colour-Tunable Ultra-Long Organic Phosphorescence of a Single-Component Molecular Crystal,” Nature Photonics 13 (2019): 406-411.

[39]

D. Guo, W. Wang, K. Zhang, et al., “Visible-Light-Excited Robust Room-Temperature Phosphorescence of Dimeric Single-Component Luminophores in the Amorphous State,” Nature Communications 15 (2024): 3598.

[40]

P. Wu, P. Li, M. Chen, et al., “3D Printed Room Temperature Phosphorescence Materials Enabled by Edible Natural Konjac Glucomannan,” Advanced Materials 36 (2024): 2402666.

[41]

Z. Wang, L. Gao, Y. Zheng, et al., “Four-in-One Stimulus-Responsive Long-Lived Luminescent Systems Based on Pyrene-Doped Amorphous Polymers,” Angewandte Chemie International Edition 134 (2022): e202203254.

[42]

J. X. Wang, Y. G. Fang, C. X. Li, et al., “Time-Dependent Afterglow Color in a Single-Component Organic Molecular Crystal,” Angewandte Chemie International Edition 59 (2020): 10032-10036.

[43]

W. Shi, R. Wang, J. Liu, F. Peng, R. Tian, and C. Lu, “Time-Dependent Phosphorescence Color of Carbon Dots in Binary Salt Matrices Through Activations by Structural Confinement and Defects for Dynamic Information Encryption,” Angewandte Chemie International Edition 62 (2023): e202303063.

[44]

X. Dou, T. Zhu, Z. Wang, et al., “Color-Tunable, Excitation-Dependent, and Time-Dependent Afterglows From Pure Organic Amorphous Polymers,” Advanced Materials 32 (2020): 2004768.

[45]

C. Kang, S. Tao, F. Yang, C. Zheng, Z. Qu, and B. Yang, “Enabling Carbonized Polymer Dots With Color-Tunable Time-Dependent Room Temperature Phosphorescence Through Confining Carboxyl Dimer Association,” Angewandte Chemie International Edition 63 (2024): e202316527.

[46]

J. Huang, L. Qu, L. Gao, et al., “Multicolor Room-Temperature Phosphorescence Achieved by Intrinsic Polymers Containing Solely One Phosphor Unit,” Macromolecules 57 (2024): 5018-5027.

[47]

W. Gong, M. Zhou, L. Xiao, et al., “Multicolor-Tunable and Time-Dependent Circularly Polarized Room-Temperature Phosphorescence From Liquid Crystal Copolymers,” Advanced Optical Materials 12 (2023): 2301922.

[48]

J. Sun, Z. Sun, Z. Wang, et al., “Ultra-Long-Lived Red TADF-CDs: Solid-State Synthesis, Time-Dependent Phosphorescence Color and Luminescent Mechanism,” Advanced Optical Materials 12 (2024): 2302542.

[49]

J. Guo, J. Liu, Y. Zhao, Y. Wang, L. Ma, and J. Jiang, “Time-Dependent and Clustering-Induced Phosphorescence, Mechanochromism, Structural-Function Relationships, and Advanced Information Encryption Based on Isomeric Effects and Host-Guest Doping,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 317 (2024): 124449.

[50]

J. Qu, X. Zhang, S. Zhang, et al., “A Facile Co-Crystallization Approach to Fabricate Two-Component Carbon Dot Composites Showing Time-Dependent Evolutive Room Temperature Phosphorescence Colors,” Nanoscale Advances 3 (2021): 5053-5061.

[51]

T. Yang, Y. Wang, J. Duan, S. Wei, S. Tang, and W. Z. Yuan, “Time-Dependent Afterglow From a Single Component Organic Luminogen,” Research 2021 (2021): 9757460.

[52]

G. Li, T. Qiu, Q. Wu, et al., “Pyrene-Alkyne-Based Conjugated Porous Polymers With Skeleton Distortion-Mediated ⋅O2− and 1O2 Generation for High-Selectivity Organic Photosynthesis,” Angewandte Chemie International Edition 63 (2024): e202405396.

[53]

C. Chen, Z. Chi, K. C. Chong, et al., “Carbazole Isomers Induce Ultralong Organic Phosphorescence,” Nature Materials 20 (2021): 175-180.

[54]

Y. Deng, Q. Zhang, and D.-H. Qu, “Emerging Hydrogen-Bond Design for High-Performance Dynamic Polymeric Materials,” ACS Materials Letters 5 (2023): 480-490.

[55]

S. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory,” Journal of Computational Chemistry 40 (2019): 2868-2881.

[56]

Y. C. Huang, H. W. Chu, C. C. Huang, W. C. Wu, and J. S. Tsai, “Alkali-Treated Konjac Glucomannan Film as a Novel Wound Dressing,” Carbohydrate Polymers 117 (2015): 778-787.

[57]

K. Katsuraya, K. Okuyama, K. Hatanaka, R. Oshima, T. Sato, and K. Matsuzaki, “Constitution of Konjac Glucomannan: Chemical Analysis and 13C NMR Spectroscopy,” Carbohydrate Polymers 53 (2003): 183-189.

[58]

T. Lu and Q. Chen, “Independent Gradient Model Based on Hirshfeld Partition: A New Method for Visual Study of Interactions in Chemical Systems,” Journal of Computational Chemistry 43 (2022): 539-555.

[59]

T. Lu and Q. Chen, “Simple, Efficient, and Universal Energy Decomposition Analysis Method Based on Dispersion-Corrected Density Functional Theory,” Journal of Physical Chemistry A 127 (2023): 7023-7035.

[60]

F. Neese, “Software Update: The ORCA Program System—Version 5.0,” Wiley Interdisciplinary Reviews-Computational Molecular Science 12 (2022): e1606.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/