Long-Persistent Luminescence of Organic Molecules With Low Photoluminescence Quantum Yield Induced by Efficient Energy Transfer

Tiantian Wang , Zhongling Du , Kun Gong , Yimeng Liang , Lulu Huang , Dongzhi Liu , Tianyang Wang , Wenping Hu

Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70122

PDF
Aggregate ›› 2025, Vol. 6 ›› Issue (10) : e70122 DOI: 10.1002/agt2.70122
RESEARCH ARTICLE

Long-Persistent Luminescence of Organic Molecules With Low Photoluminescence Quantum Yield Induced by Efficient Energy Transfer

Author information +
History +
PDF

Abstract

Organic small-molecule luminophores (SMLs) with low photoluminescence quantum yield (PLQY, ΦPL < 0.1) are commonly found in the field of optical research. However, existing strategies fail to induce their afterglow emission, as the excited-state energy of these molecules is almost dissipated through non-radiative transitions, which severely limits their practical applications. Here, we report a breakthrough strategy for converting non-emissive SMLs into highly efficient delayed emitters. By constructing efficient energy transfer between low-PLQY SMLs (acceptors) and energy donors within a thermoplastic polymer matrix, we achieve the first demonstration of delayed emission in such materials, with a delayed quantum yield of 28.9% and a delayed lifetime of 534 ms. In addition, the doped films offer distinct advantages in flat-panel display applications, successfully achieving large-area, high luminescence, and uniform ultraviolet projection display. This work marks a significant breakthrough in low-PLQY molecular afterglow materials, laying a crucial material foundation and technical support for emerging applications, such as new display devices and ultraviolet projection technologies.

Keywords

efficient energy transfer / long-persistent luminescence / low photoluminescence quantum yield

Cite this article

Download citation ▾
Tiantian Wang, Zhongling Du, Kun Gong, Yimeng Liang, Lulu Huang, Dongzhi Liu, Tianyang Wang, Wenping Hu. Long-Persistent Luminescence of Organic Molecules With Low Photoluminescence Quantum Yield Induced by Efficient Energy Transfer. Aggregate, 2025, 6(10): e70122 DOI:10.1002/agt2.70122

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Q. Gao, M. Shi, Z. , et al., “Large-Scale Preparation for Multicolor Stimulus-Responsive Room-Temperature Phosphorescence Paper via Cellulose Heterogeneous Reaction,” Advanced Materials 35 (2023): 2305126.

[2]

J. Y. Zhou, B. Tian, Y. X. Zhai, et al., “Photoactivated Room Temperature Phosphorescence From Lignin,” Nature Communications 15 (2024): 7198.

[3]

X. X. Piao, T. Y. Wang, X. F. Chen, G. M. Wang, X. X. Zhai, and K. K. Zhang, “Room-Temperature Phosphorescent Transparent Wood,” Nature Communications 16 (2025): 868.

[4]

J. Jovaišaitė, S. Kirschner, S. Raišys, et al., “Diboraanthracene-Doped Polymer Systems for Colour-Tuneable Room-Temperature Organic Afterglow,” Angewandte Chemie International Edition 62 (2022): e202215071.

[5]

W. Xu, B. Wang, S. Liu, et al., “Urea-Formaldehyde Resin Room Temperature Phosphorescent Material With Ultra-Long Afterglow and Adjustable Phosphorescence Performance,” Nature Communications 15 (2024): 4415.

[6]

H. Ding, Z. Wang, Z. Ma, et al., “Full-Color Tunable Time-Dependent Room-Temperature Phosphorescence From Self-Protective Carbonized Polymer Dots,” Advanced Materials 3727 (2025): 2418722.

[7]

J. You, X. Zhang, Q. Nan, et al., “Aggregation-Regulated Room-Temperature Phosphorescence Materials With Multi-Mode Emission, Adjustable Excitation-Dependence and Visible-Light Excitation,” Nature Communications 14 (2023): 4163.

[8]

W. Dai, X. Niu, X. Wu, et al., “Halogen Bonding: A New Platform for Achieving Multi-Stimuli-Responsive Persistent Phosphorescence,” Angewandte Chemie International Edition 61 (2022): e202200236.

[9]

Y. Peng, X. Yao, X. Hu, et al., “Edible Ultralong Organic Phosphorescent Excipient for Afterglow Visualizing the Quality of Tablets,” Advanced Materials 36 (2024): 2406618.

[10]

F. Gu, M. Ji, L. Zhang, et al., “Visualization of Photocuring and 4D Printing With Real-Time Phosphorescence,” Nature Communications 16 (2025): 4173.

[11]

Z. Xie, X. Zhang, H. Wang, et al., “Wide-Range Lifetime-Tunable and Responsive Ultralong Organic Phosphorescent Multi-Host/Guest System,” Nature Communications 12 (2021): 3522.

[12]

F. Xiao, H. Gao, Y. Lei, et al., “Guest-Host Doped Strategy for Constructing Ultralong-Lifetime Near-Infrared Organic Phosphorescence Materials for Bioimaging,” Nature Communications 13 (2022): 186.

[13]

J. Li, J. Gu, L. Ding, et al., “Near-Infrared Organic Room Temperature Phosphorescent Probes Targeting Fibroblast Activation Protein for Surgical Navigation of Liver Cancer,” Aggregate 6 (2025): e70031.

[14]

X. He, W. Huang, Y. Zheng, et al., “Achieving Room-Temperature Phosphorescence in Solution Phase From Carbon Dots Confined in Nanocrystals,” Angewandte Chemie International Edition 64 (2025): e202423388.

[15]

J. Xue, Z. Qi, D. Yan, G. P. Yang, and Y. Y. Wang, “Engineering Solvent-Coordinated Heterometallic-Organic Frameworks for Wide-Range Tuning of Ultralong Room Temperature Phosphorescence Toward Time-Resolved Anticounterfeiting,” Angewandte Chemie International Edition 64 (2025): e202501951.

[16]

J. Zhang, S. Zhang, C. Sun, et al., “Highly Bright Pure Room Temperature Phosphorescence for Circularly Polarized Organic Hyperafterglow,” Advanced Materials 37 (2025): 2500953.

[17]

S. Xiong, Y. Xiong, D. Wang, et al., “Achieving Tunable Organic Afterglow and UV-Irradiation-Responsive Ultralong Room-Temperature Phosphorescence From Pyridine-Substituted Triphenylamine Derivatives,” Advanced Materials 35 (2023): 2301874.

[18]

Y. Liang, M. Liu, T. Wang, et al., “UV-Curing-Enhanced Organic Long-Persistent Luminescence Materials,” Advanced Materials 35 (2023): 2304820.

[19]

Q. Jia, X. Yan, B. Wang, et al., “Construction of Room Temperature Phosphorescent Materials With Ultralong Lifetime by in-situ Derivation Strategy,” Nature Communications 14 (2023): 4164.

[20]

Z. Zhao, T. Zhu, A. Li, Q. Zhang, and W. Z. Yuan, “Highly Efficient Red/Near-Infrared Phosphorescence From Doped Crystals,” Angewandte Chemie International Edition 64 (2024): e202412967.

[21]

N. Gan, X. Zou, Z. Qian, et al., “Stretchable Phosphorescent Polymers by Multiphase Engineering,” Nature Communications 15 (2024): 4113.

[22]

Y. Wang, A. Shao, J. Li, et al., “Programmable Persistent Room Temperature Phosphorescence Switches Through Wavelength-Selective Photoactivation,” Angewandte Chemie International Edition 64 (2024): e202416189.

[23]

J. Wang, Y. Yang, K. Li, L. Zhang, and Z. Li, “Purely Organic Fluorescence Afterglow: Visible-Light-Excitation, Inherent Mechanism, Tunable Color, and Practical Applications With Very Low Cost,” Angewandte Chemie International Edition 62 (2023): e202304020.

[24]

T. Wang, M. Liu, W. Feng, et al., “Long-Lived Charge Separation Induced Organic Long-Persistent Luminescence With Circularly Polarized Characteristic,” Advanced Optical Materials 11 (2023): 2202613.

[25]

L. Hou, T. Wang, S. Yu, X. Xu, and X. Yu, “Multiresponsive Color-Tunable Phosphorescence With Matrix-Confined Clusters,” Aggregate 6 (2025): e70071.

[26]

J. Li, S. Hao, M. Li, et al., “Triplet Energy Gap-Regulated Room Temperature Phosphorescence in Host-Guest Doped Systems,” Angewandte Chemie International Edition 64 (2024): e202417426.

[27]

Z. Xu, W. Chen, K. Chen, et al., “Stimulus-Responsive Emission via Dynamic Triplet Energy Transfer in Organic Room-Temperature Phosphorescence Glass,” Advanced Materials 37 (2025): 2418778.

[28]

G. Yang, S. Hao, Y. Dan, et al., “Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon-Xanthone Systems,” Advanced Materials 37 (2025): 2418042.

[29]

J. Han, W. Feng, D. Y. Muleta, et al., “Small-Molecule-Doped Organic Crystals With Long-Persistent Luminescence,” Advanced Functional Materials 29 (2019): 1902503.

[30]

R. Kabe and C. Adachi, “Organic Long Persistent Luminescence,” Nature 550 (2017): 384.

[31]

X. Zheng, Y. Huang, W. Lv, J. Fan, Q. Ling, and Z. Lin, “Nearly Unity Quantum Yield Persistent Room-Temperature Phosphorescence From Heavy Atom-Free Rigid Inorganic/Organic Hybrid Frameworks,” Angewandte Chemie International Edition 61 (2022): e202207104.

[32]

Z. He, J. Song, C. Li, Z. Huang, W. Liu, and X. Ma, “High-Performance Organic Ultralong Room Temperature Phosphorescence Based on Biomass Macrocycle,” Advanced Materials 37 (2025): 2418506.

[33]

C. Lin, Z. Wu, H. Ma, et al., “Charge Trapping for Controllable Persistent Luminescence in Organics,” Nature Photonics 18 (2024): 350.

[34]

C. Lin, Z. Wu, J. Ueda, et al., “Enabling Visible-Light-Charged Near-Infrared Persistent Luminescence in Organics by Intermolecular Charge Transfer,” Advanced Materials 36 (2024): 2401000.

[35]

Y. Liang, P. Hu, H. Zhang, et al., “Enabling Highly Robust Full-Color Ultralong Room-Temperature Phosphorescence and Stable White Organic Afterglow From Polycyclic Aromatic Hydrocarbons,” Angewandte Chemie International Edition 63 (2024): e202318516.

[36]

W. Feng, F. Li, Z. Jiang, et al., “Supramolecular Entanglement Driven Emissive Aggregate Densification Enabling Room-Temperature Phosphorescence Hydrogels with Ultrastretchability and Crack-Tolerance,” Angewandte Chemie International Edition 64 (2025): e202505192.

[37]

L. Gu, W. Ye, X. Liang, et al., “Circularly Polarized Organic Room Temperature Phosphorescence From Amorphous Copolymers,” Journal of the American Chemical Society 143 (2021): 18527.

[38]

L. Lin, A.-A. Liu, W. Zhao, et al., “Multihierarchical Regulation To Achieve Quantum Dot Nanospheres With a Photoluminescence Quantum Yield Close to 100%,” Journal of the American Chemical Society 146 (2024): 21348.

[39]

G. Yang, Z. Ni, Z. J. Yu, et al., “Defect Engineering in Wide-Bandgap Perovskites for Efficient Perovskite-Silicon Tandem Solar Cells,” Nature Photonics 16 (2022): 588.

[40]

Y. Zhang, X. Ren, X. Zhao, et al., “Rhodamine B-Derived Low-Toxicity Full-Color Carbon Dots With Wide Tunable High-Stable Liquid-State Lasers,” Advanced Materials 37 (2025): 2420197.

[41]

H. Chen, Y. Zhang, J. Shan, et al., “Water-Resistant Organic Room-Temperature Phosphorescence From Block Copolymers,” Angewandte Chemie International Edition 64 (2025): e202500610.

[42]

S. Li, B. Mu, Z. Meng, Y. Zhu, H. Zhang, and A. Wang, “Facile Color Regulation of Organic/Inorganic Hybrid Pigments Combining With Palygorskite and CoNi Layered Double Hydroxides,” Dyes and Pigments 213 (2023): 111162.

[43]

M. Gsänger, D. Bialas, L. Huang, M. Stolte, and F. Würthner, “Organic Semiconductors Based on Dyes and Color Pigments,” Advanced Materials 28 (2016): 3615.

[44]

L. Zhou, J. Song, Z. He, et al., “Achieving Efficient Dark Blue Room-Temperature Phosphorescence With Ultra-Wide Range Tunable-Lifetime,” Angewandte Chemie International Edition 63 (2024): e202403773.

[45]

Y. Zhang, Y. Liu, X. Ren, Y. Kang, S. Ding, and S. Lu, “Adjusting TADF and Phosphorescence for Tailored Dynamic Time-Dependent Afterglow Colored Carbon Dots Spanning Full Visible Region,” Angewandte Chemie International Edition 64 (2025): e202421421.

[46]

C. Wang, L. Qu, X. Chen, et al., “Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long-Lived Room-Temperature Phosphorescence in Aqueous Environment,” Advanced Materials 34 (2022): 2204415.

[47]

G. Xie, N. Guo, X. Xue, et al., “Resonance-Induced Dynamic Triplet Exciton Population for Photoactivated Organic Ultralong Room Temperature Phosphorescence,” Journal of the American Chemical Society 146 (2024): 20449.

[48]

H. Wang, Q. Sun, F. Yang, et al., “Ultrahigh Resolution X-Ray Imaging With Thin-Film Scintillators Based on Aggregation-Induced Delayed Fluorescence Luminogens,” SmartMat 6 (2025): e70002.

[49]

L. Yang, L. Dong, D. Hall, et al., “Insights Into Enhanced Electrochemiluminescence of a Multiresonance Thermally Activated Delayed Fluorescence Molecule,” SmartMat 4 (2022): e1149.

[50]

L. Yan, N. Su, Y. Yang, et al., “TADF Polymer Enables Over 20% EQE in Solution-processed Green Fluorescent OLEDs,” SmartMat 5 (2024): e1272.

RIGHTS & PERMISSIONS

2025 The Author(s). Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

2

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/